Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4960503
1.
J. Y. Park and R. C. Advincula, Phys. Chem. Chem. Phys. 16, 85898593 (2014).
http://dx.doi.org/10.1039/c4cp00066h
2.
B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, Nat. Photonics 7, 407412 (2013).
http://dx.doi.org/10.1038/nphoton.2013.70
3.
S. He, S. Li, F. Wang, A. Y. Wang, J. Lin, and Z. Tan, Nanotechnology 24, 175201 (2013).
http://dx.doi.org/10.1088/0957-4484/24/17/175201
4.
H. Qin, Y. Niu, R. Meng, X. Lin, R. Lai, W. Fang, and X. Peng, J. Am. Chem. Soc. 136, 179187 (2014).
http://dx.doi.org/10.1021/ja4078528
5.
H. Gordillo, I. Suárez, R. Abargues, P. Rodríguez-Cantó, and J.P. Martínez-Pastor, NAVOLCHI_IEEEPhot_2013_ISuarez.
6.
S. Chethan Pai, M. P. Joshi, S. Raj Mohan, U. P. Deshpande, T. S. Dhami, J. Khatei, K. S. Koteshwar Rao, and G. Sanjeev, J. Phys. D. Appl. Phys. 46, 175304 (2013).
http://dx.doi.org/10.1088/0022-3727/46/17/175304
7.
Y. He, H. T. Lu, L. M. Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang, and L. H. Wang, Adv. Mater. 20, 34163421 (2008).
http://dx.doi.org/10.1002/adma.200701166
8.
Andrew M. Smith, Aaron M. Mohs, and Shuming Nie, Nature Nanotechnology 4, 56-63 (2009).
http://dx.doi.org/10.1038/nnano.2008.360
9.
S. Girish Kumar and K. S. R. Koteswara Rao, Energy Environ. Sci. 7, 45102 (2014).
http://dx.doi.org/10.1039/C3EE41981A
10.
J. Wang, G. Tang,a, X.S. Wub, and M. Gub, Surf. Interface Anal. 44, 434-438 (2012).
http://dx.doi.org/10.1002/sia.3822
11.
S. A. Muzafarova, S. A. Mirsagatov, and J. Janabergenov, Phys. Solid State 49, 11681174 (2007).
http://dx.doi.org/10.1134/S1063783407060248
12.
S. Deb, Curr. Opin. Solid State Mater. Sci. 3, 5159 (1998).
http://dx.doi.org/10.1016/S1359-0286(98)80065-X
13.
X. Wu, Sol. Energy 77, 803814 (2004).
http://dx.doi.org/10.1016/j.solener.2004.06.006
14.
N. Romeo, A. Bosio, V. Canevari, and A. Podesta, Sol. Energy 77, 795801 (2004).
http://dx.doi.org/10.1016/j.solener.2004.07.011
15.
D.W. Lane, G.J. Conibeer, D.A. Wood, K.D. Rogers, P. Capper, S. Romani, and S. Hearne, J. Crystal Growth 197, 743-748 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)00813-6
16.
M. A. Cousins, D. W. Lane, and K. D. Rogers, Thin Solid Films 431–432, 7883 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00206-2
17.
B. Siepchen, A. Klein, and W. Jaegermann, Phys. Status Solidi RRL 2, 169171 (2008).
http://dx.doi.org/10.1002/pssr.200802120
18.
W. K. Metzger, D. Albin, M. J. Romero, P. Dippo, and M. Young, J. Appl. Phys. 99, 103703 (2006).
http://dx.doi.org/10.1063/1.2196127
19.
N. Amin, K. Sopian, and M. Konagai, Sol. Energy Mater. Sol. Cells 91, 12021208 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.04.006
20.
D. W. Lane, Sol. Energy Mater. Sol. Cells 90, 11691175 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.07.003
21.
R. W. Birkmire, B. E. McCandless, and S. S. Hegedus, Int. J. Sol. Energy 12, 145154 (1992).
http://dx.doi.org/10.1080/01425919208909758
22.
Hakimeh Zare, Mahmoud Borhani, and Najmeh Zare, Feb 2015- r.opsi.www.
23.
H. Zare, M. Marandi, S. Fardindoost, V. Kumar Sharma, A. Yeltik, O. Akhavan, H. Volkan Demir, and N. Taghavinia, Nano Research 8(7), 2317-2328 (2015).
http://dx.doi.org/10.1007/s12274-015-0742-x
24.
E. Naderi, S. Nanavati, C. Majumder, and S.V. Ghaisas, AIP ADVANCES 5, 017134 (2015).
http://dx.doi.org/10.1063/1.4906794
25.
N. Kheloufi and A. Bouzid, Volume 659, 25 February 2016, Pages 295–301.
26.
S. Gundel, A. Fleszar, W. Faschinger, and W. Hanke, Phys. Rev. B 59, 15261 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.15261
27.
K. Shiraishi, J. Phys. Soc. Jpn 59, 3455 (1990).
http://dx.doi.org/10.1143/JPSJ.59.3455
28.
CRC Handbook of Chemistry and Physics, 88th ed., edited by D.R. Lide (CRC Press/Taylor and Francis, Boca Raton, FL).
29.
P.E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
31.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
32.
J. Wang, G. Tang a, X.S. Wu b, and M. Gu, Thin Solid Films 520, 3960-3964 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.01.024
33.
R. Miotto et al., Surface Science 525, 24-32 (2003).
http://dx.doi.org/10.1016/S0039-6028(02)02569-4
34.
Somesh Kr. Bhattacharya and Anjali Kshirsagar, Phys. Rev. B 75, 035402 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035402
35.
Shuqiang Jin et al., New J. of Phys. 14, 113021 (13pp) (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113021
36.
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
37.
J.A. White and D.M. Bird, Phys. Rev. B 50, 4954 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.4954
38.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
40.
G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 22 (2000).
41.
D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
42.
D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman, J. Chem. Phys. 136, 074103 (2012).
http://dx.doi.org/10.1063/1.3684549
43.
J. Wang, G. Tang,a, X.S. Wub, and M. Gub, Surf. Interface Anal. 44, 434-438 (2012).
http://dx.doi.org/10.1002/sia.3822
44.
A. Romeo, M. Terheggen, D. A. Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, Progr. Photovolt.: Res. Appl. 12, 93111 (2004).
http://dx.doi.org/10.1002/pip.527
45.
D.W. Lane, G.J. Conibeer, D.A. Wood, K.D. Rogers, P. Capper, S. Romani, and S. Hearne, J. Crystal Growth 197, 743-748 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)00813-6
46.
S. Girish Kumar and K. S. R. Koteswara Rao, Energy Environ. Sci. 7, 45102 (2014).
http://dx.doi.org/10.1039/C3EE41981A
47.
D.W. Lane, K. D. Rogers, J. D. Painter, D. A. Wood, and M. E. Ozsan, Thin Solid Films 1, 361362 (2000).
48.
S.-H. Wei, S. B. Zhang, and A. Zunger, J. Appl. Phys. 87, 1304 (2000).
http://dx.doi.org/10.1063/1.372014
49.
N. Romeo, A. Bosio, V. Canevari, and A. Podesta, Sol. Energy 77, 795801 (2004).
http://dx.doi.org/10.1016/j.solener.2004.07.011
50.
X. Wu, Sol. Energy 77, 803814 (2004).
http://dx.doi.org/10.1016/j.solener.2004.06.006
51.
S. Deb, Curr. Opin. Solid State Mater. Sci. 3, 5159 (1998).
http://dx.doi.org/10.1016/S1359-0286(98)80065-X
52.
See supplementary material at http://dx.doi.org/10.1063/1.4960503 for optimized configuration of systems Sulfur on B-type and Sulfur on A-type CdTe (111).[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4960503
Loading
/content/aip/journal/adva/6/8/10.1063/1.4960503
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4960503
2016-08-02
2016-09-28

Abstract

In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4960503.html;jsessionid=RwjvqLj3DTtTzJB3qkEjKYRP.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4960503&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4960503&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4960503'
Right1,Right2,Right3,