Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Iijima, Nature 354, 56 (1991).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
S. V. Rotkin and S. Sunramoney, Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices (Springer, Berlin, 2005).
S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004).
K. Hirahara, K. Inose, and Y. Nakayama, Appl. Phys. Lett. 97, 051905 (2010).
T. Uchida, M. Tachibana, and K. Kenichi, J. Appl. Phys. 101, 084313 (2007).
A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, Phys. Rev. B 65, 165423 (2002).
J. A. Pomoell, A. V. Krasheninnikov, K. Nordlund, and J. Keinonen, J. Appl. Phys. 96, 2864 (2004).
M. S. Raghuveer, P. G. Ganesan, J. D’Arcy-Gall, G. Ramanatha, M. Marshall, and I. Petrov, Appl. Phys Lett. 84, 4484 (2004).
B. W. Smith and D. E. Luzzi, J. Appl. Phys. 90, 3509 (2001).
A. V. Krasheninnikov, F. Banhart, J. X. Li, A. S. Foster, and R. M. Nieminen, Phys. Rev. B 72, 125428 (2005).
K. Urita, K. Suenaga, T. Sugai, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 94, 155502 (2005).
S. Suzuki and Y. Kobayashi, J. Phys. Chem. C 111, 4524 (2007).
C. Itoh, K. Uotome, K. Kisoda, T. Murakami, and H. Harima, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2772 (2008).
T. Murakami, K. Asai, Y. Yamamoto, K. Kisoda, and C. Itoh, Eur. Phys. J. B 86, 187 (2013).
T. Murakami, Y. Yamamoto, K. Kisoda, and C. Itoh, J. Appl. Phys. 114, 114311 (2013).
T. Murakami, Y. Yamamoto, M. Matsuda, K. Kisoda, H. Nishigaki, N. Hasuike, H. Harima, and C. Itoh, Jpn. J. Appl. Phys. 53, 05FC03 (2014).
T. Murakami, Yuki Yamamoto, Kenji Kisoda, and Chihiro Itoh, Jpn. J. Appl. Phys. 53, 02BD11 (2014).
H. Tabata, M. Fujii, S. Hayashi, T. Doi, and T. Wakabayashi, Carbon 44, 3168 (2006).
T. Wakabayashi, H. Tabata, T. Doi, H. Nagayama, K. Okuda, R. Umeda, I. Hisaki, M. Sonoda, Y. Tobe, T. Minematsu, K. Hashimoto, and S. Hayashi, Chem. Phys. Lett. 433, 296 (2007).
X. Zhao, Y. Ando, Y. Liu, M. Jinno, and T. Suzuki, Phys. Rev. Lett. 90, 187401 (2003).
M. Endo, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. V. Paez, S. G. Chou, and M. S. Dresselhaus, Small 2, 1031 (2006).
D. Nishide, H. Dohi, T. Wakabayashi, E. Nishibori, E.; S. Aoyagi, M. Ishida, S. Kikuchi, R. Kitaura, T. S. M. Sakata, and H. Shinohara, Chem. Phys. Lett. 428, 356 (2006).
D. Nishide, T. Wakabayashi, T. Sugai, R. Kitaura, H. Kataura, Y. Achiba, and H. Shinohara, J. Phys. Chem. C 111, 5178 (2007).
T. Murakami, K. Mitikami, S. Ishigaki, K. Matsumoto, K. Nishio, T. Isshiki, H. Harima, and K. Kisoda, J. Appl. Phys. 100, 094303 (2006).
T. Murakami, K. Kisoda, T. Tokuda, K. Matsumoto, H. Harima, K. Mitikami, and T. Isshiki, Diamond Relat. Mater. 16, 1192 (2007).
A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001).
N. Matsumoto, A. Oshima, G. Chen, M. Yudasaka, M. Yumura, K. Hata, and D. N. Futaba, Carbon 87, 239 (2015).
G. Chen, D. N. Futaba, H. Kimura, S. Sakurai, M. Yumura, and K. Hata, ACS Nano 7, 10218 (2013).
V. W. Brar, Ge. G. Samsonidze, M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, A. G. Souza Filho, and A. Jorio, Phys. Rev. B 66, 155418 (2002).
C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. V. Lier, J. C. Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and M. A. Pimenta, Phys. Rev. B 73, 193408 (2006).
L. M. Malard, D. Nishide, L. G. Dias, Rodrigo B. Capaz, A. P. Gomes, 1 A. Jorio, C. A. Achete, R. Saito, Y. Achiba, H. Shinohara, and M. A. Pimenta, Phys. Rev. B 76, 233412 (2007).
Polydiacetylenes,” Advances in Polymer Science, edited by H.J. Catlow (Springer-Verlag, New York, 1984), Vol. 63.
I. Prigogine and S. A. Rice, Advances in Chemical Physics: Polymeric Systems (Wiley, New York, 1996), Vol. 94.
R. F. Egerton, P. Li, and M. Malac, Micron 35, 399 (2004).
B. Smith and D. Luzzi, J. Appl. Phys. 90, 3509 (2001).

Data & Media loading...


Article metrics loading...



We have found that a Raman scattering (RS) peak around 1870 cm−1 was produced by the annealing of the X-ray irradiated film of single-walled carbon nanotubes (SWNTs) at 450 oC. The intensity of 1870-cm−1 peak showed a maximum at the probe energy of 2.3 eV for the RS spectroscopy with various probe lasers. Both the peak position and the probe-energy dependence were almost identical to those of the one-dimensional carbon chains previously reported in multi-walled carbon nanotubes. Consequently, we concluded that the 1870-cm−1 peak found in the present study is attributed to carbon chains. The formation of carbon chains by the annealing at temperature lower than 500 oC is firstly reported by the present study. The carbon chains would be formed by aggregation of the interstitial carbons, which are formed as a counterpart of carbon vacancies by X-ray irradiation diffused on SWNT walls. The result indicates that the combination of X-ray irradiation and subsequent thermal annealing is a feasible tool for generating new nanostructures in SWNT.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd