Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4960989
1.
R. V. Chopdekar and Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006).
http://dx.doi.org/10.1063/1.2370881
2.
X. Gao, L. Liu, B. Birajdar, M. Ziese, W. Lee, M. Alexe, and D. Hesse, Adv. Funct. Mater. 19, 3450 (2009).
http://dx.doi.org/10.1002/adfm.200900422
3.
W. Hu, L. Zou, R. Chen, W. X., X. Chen, N. Qin, S. Li, G. Yang, and D. Bao, Appl. Phys. Lett. 104, 143502 (2014).
http://dx.doi.org/10.1063/1.4870627
4.
Z. Su, S. Bennett, B. Hu, Y. Chen, and V. G. Harris, J. Appl. Phys. 115, 17A504 (2014).
http://dx.doi.org/10.1063/1.4854935
5.
C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, and A. Talkenerger, J. Appl. Phys. 113, 084101 (2013).
http://dx.doi.org/10.1063/1.4792749
6.
S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, and M. Trari, Appl. Ene. 87, 2230 (2010).
http://dx.doi.org/10.1016/j.apenergy.2009.12.016
7.
T. Niizeki, Y. Utsumi, R. Aoyama, H. Yanagihara, J. Inoue, Y. Yamasaki, H. Nakao, K. Koike, and E. Kita, Appl. Phys. Lett. 104, 059902 (2014).
http://dx.doi.org/10.1063/1.4864102
8.
I. C. Nlebedim, Y. Melikhov, and D. C. Jiles, J. Appl. Phys. 115, 043903 (2014).
http://dx.doi.org/10.1063/1.4862300
9.
Y. C. Wang, J. Ding, J. B. Yi, B. H. Liu, T. Yu, and Z. X. Shen, Appl. Phys. Lett. 84, 259 (2004).
10.
A. Quesada, F. Rubio-Marcos, J. F. Marco, F. J. Mompean, M. G. Hernández, and J. F. Fernández, Appl. Phys. Lett. 105, 202405 (2014).
http://dx.doi.org/10.1063/1.4902351
11.
S. Singh and N. Khare, Appl. Sur. Sci. 364, 783 (2016).
http://dx.doi.org/10.1016/j.apsusc.2015.12.205
12.
D. Sharma and N. Khare, Appl. Phys. Lett. 105, 032404 (2014).
http://dx.doi.org/10.1063/1.4890863
13.
R. C. Rai, S. Wilser, M. Guminiak, B. Cai, and M. L. Nakarmi, Appl. Phys. A 106, 207 (2012).
http://dx.doi.org/10.1007/s00339-011-6549-z
14.
A. V. Ravindra, P. Padhan, and W. Prellier, Appl. Phys. Lett. 101, 161902 (2012).
http://dx.doi.org/10.1063/1.4759001
15.
I. C. Nlebedim and D. C. Jiles, J. Appl. Phys. 117, 17A506 (2015).
http://dx.doi.org/10.1063/1.4919229
16.
I. C. Nlebedim, M. Vinitha, P. J. Praveen, D. Das, and D. C. Jiles, J. Appl. Phys. 113, 193904 (2013).
http://dx.doi.org/10.1063/1.4804963
17.
H. S. Mund, J. Sahariya, R. J. Choudhary, D. M. Phase, Alpa Dashora, M. Itou, Y. Sakurai, and B. L. Ahuja, Appl. Phys. Lett. 102, 232403 (2013).
http://dx.doi.org/10.1063/1.4810918
18.
N. Somaiah, T. V. Jayaraman, P. A. Joy, and D. Das, J. Mag. Magn. Matel. 324, 2286 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.02.116
19.
J. Tauc, Amorphous and Liquid Semiconductor (Plenum, New York, 1974), p. 159.
20.
R. G. Burns, Mineralogical Applications of Crystal Field Theory (Cambridge University press, 1993), p. 62.
21.
X. Fan, J. Guan, X. Cao, W. Wang, and F. Mou, Eur. J. Inorg. Chem. 419 (2010).
http://dx.doi.org/10.1002/ejic.200900681
22.
S. S. Jadhav, S. E. Shirsath, S. M. Patange, and K. M. Jadhav, J. Appl. Phys. 108, 093920 (2010).
http://dx.doi.org/10.1063/1.3499346
23.
I. Sharifi and H. Shokrollahi, J. Mag. Mag. Mat 324, 2397 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.03.008
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4960989
Loading
/content/aip/journal/adva/6/8/10.1063/1.4960989
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4960989
2016-08-09
2016-10-01

Abstract

In this report, the tuning of the optical bandgap and saturation magnetization of cobalt ferrite (CFO) thin films through low doping of zinc (Zn) has been demonstrated. The Zn doped CFO thin films with doping concentrations (0 to 10%) have been synthesized by ultrasonic assisted chemical vapour deposition technique. The optical bandgap varies from 1.48 to 1.88 eV and saturation magnetization varies from 142 to 221 emu/cc with the increase in the doping concentration and this change in the optical and magnetic properties is attributed to the change in the relative population of the Co2+ at the tetrahedral and octahedral sites. Raman study confirms the decrease in the population of Co2+ at tetrahedral sites with controlled Zn doping in CFO thin films. A quantitative analysis has been presented to explain the observed variation in the optical bandgap and saturation magnetization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4960989.html;jsessionid=RNL5u8q8t7974F9WFgJ5eXbm.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4960989&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4960989&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4960989'
Right1,Right2,Right3,