Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4960992
1.
B. A. Kupershmidt, Phys. Lett. A 102, 213 (1984).
http://dx.doi.org/10.1016/0375-9601(84)90693-5
2.
Y. I. Martin and A. O. Radul, Commun. Math. Phys. 98, 65 (1985).
http://dx.doi.org/10.1007/BF01211044
3.
P. Mathieu, J. Math. Phys. 29, 2499 (1988).
http://dx.doi.org/10.1063/1.528090
4.
G. H. M. Roelofs and P. H. M. Kersten, J. Math. Phys. 33, 2185 (1992).
http://dx.doi.org/10.1063/1.529640
5.
S. Andrea, A. Restuccia, and A. Sotomayor, J. Math. Phys. 42, 2625 (2001).
http://dx.doi.org/10.1063/1.1368139
6.
X. N. Gao and S. Y. Lou, Phys. Lett. B 707, 209 (2012).
http://dx.doi.org/10.1016/j.physletb.2011.12.021
7.
B. Ren, Phys. Scr. 90, 065206 (2015).
http://dx.doi.org/10.1088/0031-8949/90/6/065206
8.
W. G. Cheng, B. Li, and Y. Chen, Commun. Nonlinear Sci. Numer. Simulat. 29, 198 (2015).
http://dx.doi.org/10.1016/j.cnsns.2015.05.007
9.
X. N. Gao, S. Y. Lou, and X. Y. Tang, J. High Energy Phys. 05, 029 (2013).
10.
K. Becker and M. Becker, Mod. Phys. Lett. A 8, 1205 (1993).
http://dx.doi.org/10.1142/S0217732393002695
11.
Z. Popowicz, Phys. Lett. A 373, 3315 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.07.057
12.
A. Choudhuri, B. Talukdar, and S. Ghosh, Nonlinear Dynam. 58, 249 (2009).
http://dx.doi.org/10.1007/s11071-009-9475-2
13.
B. Ren, J. Lin, and J. Yu, AIP Advances 3, 042129 (2013).
http://dx.doi.org/10.1063/1.4802969
14.
B. Ren, Chin. J. Phys. 53, 56 (2015);
B. Ren, Open Phys. 13, 205 (2015);
http://dx.doi.org/10.1515/phys-2015-0027
B. Ren, J. R. Yang, P. Liu, and X. Z. Liu, Chin. J. Phys. 53, 080001 (2015).
15.
J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).
http://dx.doi.org/10.1063/1.525721
16.
D. S. Wang and X. Q. Wei, Appl. Math. Lett. 51, 60 (2016).
http://dx.doi.org/10.1016/j.aml.2015.07.007
17.
P. J. Olver, Application of Lie group to differential equation (Springer-Verlag: Berlin, 1986);
G. W. Bluman and S. C. Anco, Symmetry and integration methods for differential equations (Springer-Verlag: New York, 2002).
18.
X. R. Hu, S. Y. Lou, and Y. Chen, Phys. Rev. E 85, 056607 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.056607
19.
X. P. Cheng, S. Y. Lou, C. L. Chen, and X. Y. Tang, Phys. Rev. E 89, 043202 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.043202
20.
B. Ren, Commun. Nonlinear Sci. Numer. Simulat. 42, 456 (2017).
http://dx.doi.org/10.1016/j.cnsns.2016.06.017
21.
H. Hennig, Physics 7, 31 (2014).
http://dx.doi.org/10.1103/Physics.7.31
22.
A. Chabchoub and M. Fink, Phys. Rev. Lett. 112, 124101 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.124101
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4960992
Loading
/content/aip/journal/adva/6/8/10.1063/1.4960992
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4960992
2016-08-09
2016-09-30

Abstract

The supersymmetric mKdVB system is transformed to a coupled bosonic system by using the bosonization approach. By a singularity structure analysis, the bosonized supersymmetric mKdVB (BSmKdVB) equation admits the Painlevé property. Starting from the standard truncated Painlevé method, the nonlocal symmetry for the BSmKdVB equation is obtained. To solve the first Lie’s principle related with the nonlocal symmetry, the nonlocal symmetry is localized to the Lie point symmetry by introducing multiple new fields. Thanks to localization processes, similarity reductions for the prolonged systems are studied by the Lie point symmetry method. The interaction solutions among solitons and other complicated waves including Painlevé II waves and periodic cnoidal waves are given through the reduction theorems. The soliton-cnoidal wave interaction solutions are explicitly given by using the mapping and deformation method. The concrete soliton-cnoidal interaction solutions are displayed both in analytical and graphical ways.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4960992.html;jsessionid=pjXENMSrHhBHLbtJ4cES0nde.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4960992&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4960992&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4960992'
Right1,Right2,Right3,