Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. J. Jaccodine and W. A. Schlegel, “Measurement of Strains at Si/SiO2 Interface,” J. Appl. Phys. 37, 2429 (1966).
E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollack, and M. Cardona, “Effect of Static Uniaxial Stress on the Raman Spectrum of Silicon,” Sol. Stat. Comm. 8, 133 (1970).
S. Nakashima, S. Oima, A. Mitsuishi, T. Nishimura, T. Fukumoto, and Y. Akasaka, “Raman Scattering Study of Ion Implanted and C.W.-Laser Annealed Polycrystalline Silicon,” Sol. Stat. Comm. 40, 765 (1981).
I. W. Boyd and J. I. B. Wilson, “A study of thin silicon dioxide films using infrared absorption techniques,” J. Appl. Phys. 53, 4166 (1982).
I. W. Boyd and J. I. B. Wilson, “Silicon - silicon dioxide interface: An infrared study,” J. Appl. Phys. 62, 3195 (1987).
S. R. Elliot, The Physics and Chemistry of Solids (Wiley, 1998).
A. M. Smith, A. M. Mohs, and S. Nie, “Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain,” Nature Nanotech. 4, 56 (2009).
E. Klimešová, K. Kůsová, J. Vacík, V. Holý, and I. Pelant, “Tuning luminescence properties of silicon nanocrystals by lithium doping,” J. Appl. Phys. 112, 064322 (2012).
J. Laube, S. Gutsch, D. Hiller, M. Bruns, C. Kübel, C. Weiss, and M. Zacharias, “Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 116, 223501 (2014).
I. N. Stranski and L. Krastanow, “Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander,” Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akademie der Wissenschaften Wien (in German) 146, 797 (1938).
E. Bauer, “Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I,” Zeitschrift für Kristallographie (in German) 110, 372 (1958).
R. Oshima, T. Hashimoto, H. Shigekawa, and Y. Okada, “Multiple stacking of self-assembled InAs quantum dots embedded by GaNAs strain compensating layers,” J. Appl. Phys. 100, 083110 (2006).
R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93, 083111 (2008).
V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B 78, 205321 (2008).
C. G. Bailey, S. M. Hubbard, D. V. Forbes, and R. P. Rafaelle, “Evaluation of strain balancing layer thickness for InAs/GaAs quantum dot arrays using high resolution x-ray diffraction and photoluminescence,” Appl. Phys. Lett. 95, 203110 (2009).
A. R. Stegner, R. N. Pereira, K. Klein, R. Lechner, R. Dietmueller, M. S. Brandt, M. Stutzmann, and H. Wiggers, “Electronic Transport in Phosphorus-Doped Silicon Nanocrystal Networks,” Phys. Rev. Lett. 100, 026803 (2008).
A. R. Stegner, R. N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, and M. S. Brandt, “Doping efficiency in freestanding silicon nanocrystals from the gas phase: Phosphorus incorporation and defect-induced compensation,” Phys. Rev. B 80, 165326 (2009).
D. König, S. Gutsch, H. Gnaser, M. Kopnarski, J. Göttlicher, R. Steininger, M. Zacharias, and D. Hiller, “Location and Electronic Nature of Phosphorus in the Si Nanocrystal – SiO2 System,” Sci. Rep. 5, 9702 (2015).
H. Gnaser, S. Gutsch, M. Wahl, R. Schiller, M. Kopnarski, D. Hiller, and M. Zacharias, “Phosphorus doping of Si nanocrystals embedded in silicon oxynitride determined by atom probe tomography,” J. Appl. Phys. 115, 034304 (2014).
G. M. Dalpian and J. R. Chelikowsky, “Self-Purification in Semiconductor Nanocrystals,” Phys. Rev. Lett. 96, 226802 (2006).
G. M. Dalpian and J. R. Chelikowsky, “Dalpian and Chelikowsky Reply:,” Phys. Rev. Lett. 100, 179703 (2008).
T. L. Chan, M. L. Tiago, E. Kaxiras, and J. R. Chelikowsky, “Size Limits on Doping Phosphorus into Silicon Nanocrystals,” Nano Lett. 8, 596 (2008).
S. Ossicini, E. Degoli, F. Iori, E. Luppi, R. Magri, G. Cantele, F. Trani, and D. Ninno, “Simultaneously B- and P-doped silicon nanoclusters: Formation energies and electronic properties,” Appl. Phys. Lett. 87, 173120 (2005).
D. König, D. Hiller, S. Gutsch, and M. Zacharias, “Energy Offset Between Silicon Quantum Structures: Interface Impact of Embedding Dielectrics as Doping Alternative,” Appl. Mater. Interfaces 1, 1400359 (2014).
P. J. Hesketh, C. Ju, S. Gowda, E. Zanoria, and S. Danyluk, “Surface Free Energy Model of Silicon Anisotropic Etching,” J. Electrochem. Soc. 140, 1080 (1993).
D. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, “Equilibrium Shape of Si,” Phys. Rev. Lett. 70, 1643 (1993).
S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. V. Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nature Nanotech. 3, 174 (2008).
E. Zeidler (ed.), in Oxford Users’ Guide to Mathematics (translated from German by B. Hunt) (Oxford University Press, 2004).
M. Grundmann, O. Stier, and D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969 (1995).
M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett. 84, 648 (2004).
A. Stesmans, M. Jivanescu, S. Godefroo, and M. Zacharias, “Paramagnetic point defects at SiO2/nanocrystalline Si interfaces,” Appl. Phys. Lett. 93, 023123 (2008).
S. Schuppler, S. L. Friedman, M. A. Markus, Y. H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus, and P. H. Citrin, “Dimensions of Luminescent Oxidized and Porous Siiicon Structures,” Phys. Rev. Lett. 72, 2648 (1994).
A. K. Kambham, A. Kumar, A. Florakis, and W. Vandervorst, “Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography,” Nanotechnology 24, 275705 (2013).
S. Koelling, O. Richard, H. Bender, M. Uematsu, A. Schulze, G. Zschaetzsch, M. Gilbert, and W. Vandervorst, “Direct Imaging of 3D Atomic-Scale Dopant-Defect Clustering Processes in Ion-Implanted Silicon,” Nano Lett. 13, 2458 (2013).
D. König, J. Rudd, M. A. Green, and G. Conibeer, “Role of the interface for the electronic structure of Si quantum dots,” Phys. Rev. B 78, 035339 (2008).
V. Heine, “Theory of Surface States,” Phys. Rev. 138, A1689 (1965).
J. Tersoff, “Theory of semiconductor heterojunctions: The role of quantum dipoles,” Phys. Rev. B 30, 4874 (1984).
Y. Nishi, T. Yamauchi, T. Marukame, A. Kinoshita, J. Koga, and K. Kato, “Schottky barrier height modulation by atomic dipoles at the silicide/silicon interface,” Phys. Rev. B 84, 115323 (2011).
F. Ehrhardt, G. Ferblantier, D. Muller, C. Ulhaq-Bouillet, H. Rinnert, and A. Slaoui, “Control of silicon nanoparticle size embedded in silicon oxynitride dielectric matrix,” J. Appl. Phys. 114, 033528 (2013).
C. R. Helms and E. H. Poindexter, “The silicon-silicon-dioxide system: its microstructure and imperfections,” Rep. Progr. Phys. 57, 791 (1994).
K. Keunen, A. S. A, and V. V. Afanasév, “Paramagnetic Pb-type interface defects in thermal (110)Si/SiO2,” Appl. Phys. Lett. 98, 213503 (2011).
M. Jivanescu, A. Stesmans, and M. Zacharias, “Inherent paramagnetic defects in layered Si/SiO2 superstructures with Si nanocrystals,” J. Appl. Phys. 104, 103518 (2008).
D. König, M. A. Green, and G. Conibeer, “DF-HF Computation of Si QDs: Intrinsic Stress, Iso-Valent Impurities and Validity of the Effective Mass Approximation,” in Proc. of 21st European Photovoltaics Science and Engineering Conference (WIP Munich, Dresden, Germany, 2006), presentation 1CO.6.4, CD-ROM.
T. Okada, T. Iwaki, K. Yamamoto, H. Kasahara, and K. Abe, “Raman Scattering from Gas-Evaporated Silicon Small Particles,” Sol. Stat. Comm. 49, 809 (1984).
K. Kůsovà, L. Ondič, E. Klime šovà, K. Herynkovà, I. Pelant, S. Dani š, J. Valenta, M. Gallart, M. Ziegler, B. Hönerlage, and P. Gilliot, “Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain,” Appl. Phys. Lett. 101, 143101 (2012).
J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002).
J. Valenta, N. Lalic, and J. Linnros, “Electroluminescence of single silicon nanocrystals,” Appl. Phys. Lett. 84, 1459 (2004).
J. Ibanez, S. Hernandez, J. Lopez-Vidrier, D. Hiller, S. Gutsch, M. Zacharias, A. Segura, J. Valenta, and B. Garrido, “Optical emission from SiO2-embedded silicon nanocrystals: A high-pressure Raman and photoluminescence study,” Phys. Rev. B 92, 035432 (2015).
J. Heitmann, F. Müller, M. Zacharias, and U. Gösele, “Silicon nanocrystals: Size matters,” Adv. Mater. 17, 795 (2005).

Data & Media loading...


Article metrics loading...



Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size . I deduce geometrical number series as analytical tools to obtain the number of NC atoms ( []), bonds between NC atoms ( []) and interface bonds ( []) for seven high symmetry zinc-blende (zb) NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd