Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961024
1.
Spin dynamics in confined magnetic structures I&II, edited by B. Hillebrands and K. Ounadjela (Springer-Verlag, Berlin, 2002 and 2003).
2.
Spin dynamics in confined magnetic structures III, edited by B. Hillebrands and A. Thiaville (Springer-Verlag, Berlin, 2006).
3.
Shouheng Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).
http://dx.doi.org/10.1126/science.287.5460.1989
4.
C. T. Black, C. B. Murray, R. L. Sandstrom, and Shouheng Sun, Science 290, 1131 (2000).
http://dx.doi.org/10.1126/science.290.5494.1131
5.
S. I. Woods, J. R. Kirtley, Shouheng Sun, and R. H. Koch, Phys. Rev. Lett. 87, 137205 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.137205
6.
D. Zitoun, M. Respaud, M.-C. Fromen, M. J. Casanove, P. Lecante, C. Amiens, and B. Chaudret, Phys. Rev. Lett. 89, 037203 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.037203
7.
E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
8.
W. K. Hiebert, A. Stankiewicz, and M. R. Freeman, Phys. Rev. Lett. 79, 1134 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1134
9.
R. L. Stamps and B. Hillebrands, Appl. Phys. Lett. 75, 1143 (1999);
http://dx.doi.org/10.1063/1.124623
M. Bauer, J. Fassbender, B. Hillebrands, and R. L. Stamps, Phys. Rev. B 61, 3410 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.3410
10.
H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas, and J. Miltat, Phys. Rev. Lett. 90, 017204 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.017204
11.
Z. Z. Sun and X. R. Wang, Phys. Rev. B 71, 174430 (2005);
http://dx.doi.org/10.1103/PhysRevB.71.174430
Z. Z. Sun and X. R. Wang, Phys. Rev. B 73, 092416 (2006);
http://dx.doi.org/10.1103/PhysRevB.73.092416
Z. Z. Sun and X. R. Wang, Phys. Rev. B 74, 132401 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.132401
12.
Z. Z. Sun and X. R. Wang, Phys. Rev. Lett. 97, 077205 (2006);
http://dx.doi.org/10.1103/PhysRevLett.97.077205
X. R. Wang, P. Yan, J. Lu, and C. He, Europhys. Lett. 84, 27008 (2008).
http://dx.doi.org/10.1209/0295-5075/84/27008
13.
Y. Acremann, C. H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, and H. Melchior, Science 290, 492 (2000);
http://dx.doi.org/10.1126/science.290.5491.492
Y. Acremann, C. H. Back, M. Buess, D. Pescia, and V. Pokrovsky, Appl. Phys. Lett. 79, 2228 (2001).
http://dx.doi.org/10.1063/1.1407299
14.
M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998);
http://dx.doi.org/10.1103/PhysRevLett.80.4281
J. Z. Sun and J. Magn, Magn. Mater. 202, 157 (1999);
http://dx.doi.org/10.1016/S0304-8853(99)00289-9
E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999);
http://dx.doi.org/10.1126/science.285.5429.867
J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000);
http://dx.doi.org/10.1103/PhysRevLett.84.3149
S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003).
http://dx.doi.org/10.1038/nature01967
15.
J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996);
http://dx.doi.org/10.1016/0304-8853(96)00062-5
L. Berger, Phys. Rev. B 54, 9353 (1996);
http://dx.doi.org/10.1103/PhysRevB.54.9353
Y. B. Bazaliy, B. A. Jones, and S.-C. Zhang, Phys. Rev. B 57, R3212 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R3213
16.
A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett. 84, 2481 (2000);
http://dx.doi.org/10.1103/PhysRevLett.84.2481
X. Wanital, E. B. Myers, P. W. Brouwer, and D. C. Ralph, Phys. Rev. B 62, 12317 (2000);
http://dx.doi.org/10.1103/PhysRevB.62.12317
M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.014407
17.
X. R. Wang and Z. Z. Sun, Phys. Rev. Lett. 98, 077201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.077201
18.
A. Sukhov and J. Berakdar, Phys. Rev. B 79, 134433 (2009);
http://dx.doi.org/10.1103/PhysRevB.79.134433
A. Sukhov and J. Berakdar, Phys. Rev. Lett. 102, 057204 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.057204
19.
Kai-Zhong Gao, Eric D. Boerner, and H. Neal Bertram, J Appl Phys 93, 6549 (2003).
http://dx.doi.org/10.1063/1.1555378
20.
L. H. Bennett, E. Della Torre et al., J. Appl. Phys. 99, 08K507 (2006).
http://dx.doi.org/10.1063/1.2177139
21.
N. Ntallis and K.G. Efthimiadis, Computational Materials Science 97, 4247 (2015).
http://dx.doi.org/10.1016/j.commatsci.2014.10.010
22.
M. Hehn, K. Ounadjela, J.-P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, Science 272, 1782 (1996).
http://dx.doi.org/10.1126/science.272.5269.1782
23.
C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, Science 282, 449 (1998).
http://dx.doi.org/10.1126/science.282.5388.449
24.
S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).
http://dx.doi.org/10.1126/science.287.5460.1989
25.
H. N. Bertram and J. C. Mallinson, J. Appl. Phys. 40, 1301 (1969);
http://dx.doi.org/10.1063/1.1657640
H. N. Bertram and J. C. Mallinson, J. Appl. Phys. 41, 1102 (1970).
http://dx.doi.org/10.1063/1.1658830
26.
W. Chen, S. Zhang, and H. N. Bertram, J. Appl. Phys. 71, 5579 (1992).
http://dx.doi.org/10.1063/1.351376
27.
J. J. Lu, M.-T. Liu, C. C. Kuo, and H. L. Huang, J. Appl. Phys. 85, 5558 (1999);
http://dx.doi.org/10.1063/1.369894
H. L. Huang and J. J. Lu, Appl. Phys. Lett. 75, 710 (1999).
http://dx.doi.org/10.1063/1.124490
28.
A. Lyberatos and R. W. Chantrell, J. Appl. Phys. 73, 6501 (1993).
http://dx.doi.org/10.1063/1.352594
29.
C. Xu, P.M. Hui, J. H. Zhou, and Z. Y. Li, J. Appl. Phys. 91, 5957 (2002);
http://dx.doi.org/10.1063/1.1465511
L. F. Zhang, C. Xu, P. M. Hui, and Y. Q. Ma, J. Appl. Phys. 97, 103912 (2005).
http://dx.doi.org/10.1063/1.1900930
30.
H. N. Pham, I. Dumitru, A. Stancu, and L. Spinu, J. Appl. Phys. 97, 10P106 (2005).
http://dx.doi.org/10.1063/1.1853212
31.
A.-V. Plamada, D. Cimpoesu, and A. Stancu, Appl. Phys. Lett. 96, 122505 (2010).
http://dx.doi.org/10.1063/1.3339874
32.
Z. Z. Sun, A. López, and J. Schliemann, J. Appl. Phys. 109, 104303 (2011).
http://dx.doi.org/10.1063/1.3581106
33.
The OOMMF code is available at http://math.nist.gov/oommf.
34.
W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963);
http://dx.doi.org/10.1103/PhysRev.130.1677
W. F. Brown, Jr., IEEE Trans. Mag. 15, 1196 (1979).
http://dx.doi.org/10.1109/TMAG.1979.1060329
35.
C. Vouille, A. Thiaville, and J. Miltat, Journal of Magnetism and Magnetic Materials e1237–e1238, 272276 (2004).
36.
Y. K. Jeong, J. H. Lee, S. J. Ahn, and H. M. Jang, Solid State Communications 152, 11121115 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.010
37.
A Sukhov and J Berakdar, J. Phys.: Condens. Matter 20, 125226 (2008).
http://dx.doi.org/10.1088/0953-8984/20/12/125226
38.
W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, Phys. Rev. B. 89, 054408 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.054408
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961024
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961024
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961024
2016-08-09
2016-09-27

Abstract

Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961024.html;jsessionid=DJPagoB2En-1hwZxkm0CHf90.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961024&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961024&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961024'
Right1,Right2,Right3,