Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).
S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovolt: Res. Appl. 18, 453 (2010).
C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, Phys. Rev. Lett. 112, 156103 (2014).
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Stat. Solidi RRL 9, 28 (2015).
S. Merdes, F. Ziem, T. Lavrenko, T. Walter, I. Lauermann, M. Klingsporn, S. Schmidt, F. Hergert, and R. Schlatmann, Prog. Photovoltaics 23, 1493 (2015).
J. Burschka, N. Pellet, Soo-Jin Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and Michael Grätzel, Nature 499, 316 (2013).
N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Nature 517, 476 (2015).
H. Sasaki, H. Morikawa, Y. Matsuno, M. Deguchi, T. Ishihara, H. Kumabe, T. Murotani, and S. Mitsui, Jpn. J. Appl. Phys. Part 1 33, 3389 (1994).
J. Müller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004).
A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsvh, U. Kroll, C. Droz, and J. Bailat, Prog. Photovolt: Res. Appl. 12, 113 (2004).
J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, Sol. Energy Mater. Sol. Cells 128, 190 (2014).
A. Bozzola, P. Kowalczewski, and L. C. Andreani, J. Appl. Phys. 115, 094501 (2014).
O. Isabella, J. Krc, and M. Zeman, Appl. Phys. Lett. 97, 101106 (2010).
H. Sai, Y. Kanamori, and M. Kondo, Appl. Phys. Lett. 98, 113502 (2011).
K. Morita, Y. Inomata, and T. Suemasu, Thin Solid Films 508, 363 (2006).
M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sakiguchi, K. O. Hara, N. Usami, and T. Suemasu, J. Cryst. Growth 348, 75 (2012).
K. O. Hara, N. Usami, K. Toh, M. Baba, K. Toko, and T. Suemasu, J. Appl. Phys. 112, 083108 (2012).
K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, Appl. Phys. Express 6, 112302 (2013).
D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, Phys. Status Solidi B 244, 2611 (2007).
K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys. 50, 068001 (2011).
M. Kumar, N. Umezawa, and M. Imai, J. Appl. Phys. 115, 203718 (2014).
T. Suemasu, Jpn. J. Appl. Phys. 54, 07JA01 (2015).
R. Takabe, K. O. Hara, M. Baba, W. Du, N. Shimada, K. Toko, N. Usami, and T. Suemasu, J. Appl. Phys. 115, 193510 (2014).
R. Takabe, H. Takeuchi, W. Du, K. Ito, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, J. Appl. Phys. 119, 165304 (2016).
R. Takabe, W. Du, K. Ito, H. Takeuchi, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, J. Appl. Phys. 119, 025306 (2016).
D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. Du, M. Baba, Y. Li, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Phys. 108, 152101 (2016).
H. Fujiwara and M. Kondo, J. Appl. Phys. 101, 054516 (2007).
Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, 4155 (2004).
Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L178 (2004).
R. Takabe, K. Nakamura, M. Baba, W. Du, M. A. Khan, K. Toko, M. Sasase, K. O. Hara, N. Usami, and T. Suemasu, Jpn. J. Appl. Phys. 53, 04ER04 (2014).
M. Ajmal Khan, K. O. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. 102, 112107 (2013).
J. R. Sites and P. H. Mauk, Solar Cells 27, 411 (1989).

Data & Media loading...


Article metrics loading...



Fabrication of p-BaSi(20nm)/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses ( ) and varying air exposure durations ( ) prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies () reached approximately 4.7% regardless of (varying from 12–150 h) for solar cells with = 5 nm. In contrast, increased from 5.3 to 6.6% with increasing for those with = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density ( ) and diode ideality factor decreased with , resulting in the enhancement of . The effects of the variation of (0.7, 2, 3, and 5 nm) upon the solar cell performance were examined while keeping = 150 h. The reached a maximum of 9.0% when was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and exhibited a tendency to decrease as increased. These results demonstrate that a moderate oxidation of BaSi is a very effective means to enhance the of BaSi solar cells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd