Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961063
1.
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
http://dx.doi.org/10.1002/pip.822
2.
H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.002
3.
S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovolt: Res. Appl. 18, 453 (2010).
http://dx.doi.org/10.1002/pip.969
4.
C. Li, Y. Wu, J. Poplawsky, T. J. Pennycook, N. Paudel, W. Yin, S. J. Haigh, M. P. Oxley, A. R. Lupini, M. Al-Jassim, S. J. Pennycook, and Y. Yan, Phys. Rev. Lett. 112, 156103 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.156103
5.
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Stat. Solidi RRL 9, 28 (2015).
http://dx.doi.org/10.1002/pssr.201409520
6.
S. Merdes, F. Ziem, T. Lavrenko, T. Walter, I. Lauermann, M. Klingsporn, S. Schmidt, F. Hergert, and R. Schlatmann, Prog. Photovoltaics 23, 1493 (2015).
http://dx.doi.org/10.1002/pip.2579
7.
J. Burschka, N. Pellet, Soo-Jin Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and Michael Grätzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
8.
N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Nature 517, 476 (2015).
http://dx.doi.org/10.1038/nature14133
9.
H. Sasaki, H. Morikawa, Y. Matsuno, M. Deguchi, T. Ishihara, H. Kumabe, T. Murotani, and S. Mitsui, Jpn. J. Appl. Phys. Part 1 33, 3389 (1994).
http://dx.doi.org/10.1143/JJAP.33.3389
10.
J. Müller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004).
http://dx.doi.org/10.1016/j.solener.2004.03.015
11.
A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsvh, U. Kroll, C. Droz, and J. Bailat, Prog. Photovolt: Res. Appl. 12, 113 (2004).
http://dx.doi.org/10.1002/pip.533
12.
J. Haschke, D. Amkreutz, L. Korte, F. Ruske, and B. Rech, Sol. Energy Mater. Sol. Cells 128, 190 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.04.035
13.
A. Bozzola, P. Kowalczewski, and L. C. Andreani, J. Appl. Phys. 115, 094501 (2014).
http://dx.doi.org/10.1063/1.4867008
14.
O. Isabella, J. Krc, and M. Zeman, Appl. Phys. Lett. 97, 101106 (2010).
http://dx.doi.org/10.1063/1.3488023
15.
H. Sai, Y. Kanamori, and M. Kondo, Appl. Phys. Lett. 98, 113502 (2011).
http://dx.doi.org/10.1063/1.3565249
16.
K. Morita, Y. Inomata, and T. Suemasu, Thin Solid Films 508, 363 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.07.344
17.
M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sakiguchi, K. O. Hara, N. Usami, and T. Suemasu, J. Cryst. Growth 348, 75 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.03.044
18.
K. O. Hara, N. Usami, K. Toh, M. Baba, K. Toko, and T. Suemasu, J. Appl. Phys. 112, 083108 (2012).
http://dx.doi.org/10.1063/1.4759246
19.
K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, Appl. Phys. Express 6, 112302 (2013).
http://dx.doi.org/10.7567/APEX.6.112302
20.
D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, Phys. Status Solidi B 244, 2611 (2007).
http://dx.doi.org/10.1002/pssb.200642556
21.
K. Toh, T. Saito, and T. Suemasu, Jpn. J. Appl. Phys. 50, 068001 (2011).
http://dx.doi.org/10.7567/JJAP.50.068001
22.
M. Kumar, N. Umezawa, and M. Imai, J. Appl. Phys. 115, 203718 (2014).
http://dx.doi.org/10.1063/1.4880662
23.
T. Suemasu, Jpn. J. Appl. Phys. 54, 07JA01 (2015).
http://dx.doi.org/10.7567/JJAP.54.07JA01
24.
R. Takabe, K. O. Hara, M. Baba, W. Du, N. Shimada, K. Toko, N. Usami, and T. Suemasu, J. Appl. Phys. 115, 193510 (2014).
http://dx.doi.org/10.1063/1.4878159
25.
R. Takabe, H. Takeuchi, W. Du, K. Ito, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, J. Appl. Phys. 119, 165304 (2016).
http://dx.doi.org/10.1063/1.4947501
26.
R. Takabe, W. Du, K. Ito, H. Takeuchi, K. Toko, S. Ueda, A. Kimura, and T. Suemasu, J. Appl. Phys. 119, 025306 (2016).
http://dx.doi.org/10.1063/1.4939614
27.
D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. Du, M. Baba, Y. Li, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Phys. 108, 152101 (2016).
28.
H. Fujiwara and M. Kondo, J. Appl. Phys. 101, 054516 (2007).
http://dx.doi.org/10.1063/1.2559975
29.
Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, 4155 (2004).
http://dx.doi.org/10.1143/JJAP.43.4155
30.
Y. Inomata, T. Nakamura, T. Suemasu, and F. Hasegawa, Jpn. J. Appl. Phys. 43, L178 (2004).
http://dx.doi.org/10.1143/JJAP.43.4155
31.
R. Takabe, K. Nakamura, M. Baba, W. Du, M. A. Khan, K. Toko, M. Sasase, K. O. Hara, N. Usami, and T. Suemasu, Jpn. J. Appl. Phys. 53, 04ER04 (2014).
http://dx.doi.org/10.7567/JJAP.53.04ER04
32.
M. Ajmal Khan, K. O. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, N. Usami, and T. Suemasu, Appl. Phys. Lett. 102, 112107 (2013).
http://dx.doi.org/10.1063/1.4796142
33.
J. R. Sites and P. H. Mauk, Solar Cells 27, 411 (1989).
http://dx.doi.org/10.1016/0379-6787(89)90050-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961063
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961063
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961063
2016-08-10
2016-12-04

Abstract

Fabrication of p-BaSi(20nm)/n-Si heterojunction solar cells was performed with different a-Si capping layer thicknesses ( ) and varying air exposure durations ( ) prior to the formation of a 70-nm-thick indium-tin-oxide electrode. The conversion efficiencies () reached approximately 4.7% regardless of (varying from 12–150 h) for solar cells with = 5 nm. In contrast, increased from 5.3 to 6.6% with increasing for those with = 2 nm, in contrast to our prediction. For this sample, the reverse saturation current density ( ) and diode ideality factor decreased with , resulting in the enhancement of . The effects of the variation of (0.7, 2, 3, and 5 nm) upon the solar cell performance were examined while keeping = 150 h. The reached a maximum of 9.0% when was 3 nm, wherein the open-circuit voltage and fill factor also reached a maximum. The series resistance, shunt resistance, and exhibited a tendency to decrease as increased. These results demonstrate that a moderate oxidation of BaSi is a very effective means to enhance the of BaSi solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961063.html;jsessionid=-ooZefYtpZfnGDcR2kZc9EDX.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961063&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961063'
Right1,Right2,Right3,