Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961144
1.
E. J. W. Verwey, Nature (London) 144, 327 (1939).
http://dx.doi.org/10.1038/144327b0
2.
Z. Zhang and S. Satpathy, Phys. Rev. B 44, 13319 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13319
3.
H. T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93, 156403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.156403
4.
G. Q. Gong, A. Gupta, Gang Xiao, W. Qian, and V. P. Dravid, Phys. Rev. B 56, 5096 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.5096
5.
M. Ziese and H. J. Blythe, J. Phys.: Condens. Matter 12, 13 (2000).
http://dx.doi.org/10.1088/0953-8984/12/1/302
6.
J. P. Wright, J. P. Attfield, and P. G. Radaelli, Phys. Rev. Lett. 87, 266401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.266401
7.
M. S. Senn, J. P. Wright, and J. P. Attfield, Nature 481, 173 (2012);
http://dx.doi.org/10.1038/nature10704
M. Senn, I. Loa, J. P. Wright, and J. P. Attfield, Phys. Rev. B 85, 125119 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125119
8.
J. J. Versluijs, M. A. Bari, and J. M. D. Coey, Phys. Rev. Lett. 87, 026601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.026601
9.
G. Hu and Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.276601
10.
S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M. Samant, Proceedings of the IEEE 91, 661 (2003).
http://dx.doi.org/10.1109/JPROC.2003.811807
11.
M. Bibes and A. Barthelemy, IEEE transactions on electron devices 54, 1003 (2007).
http://dx.doi.org/10.1109/TED.2007.894366
12.
P. Wang, Z. Ka̧kol, M. Wittenauer, and J. M. Honig, Phys. Rev. B 42, 4553 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.4553
13.
M. Wen, Q. Li, and Y. Li, J. Electron Spectroscopy and Related Phenomenon 153, 65 (2006).
http://dx.doi.org/10.1016/j.elspec.2006.06.002
14.
Z.L. Lu, L.Y. Lv, J.M. Zhu, S.D. Li, X.C. Liu, W.Q. Zou, F.M. Zhang, and Y.W. Du, Solid State Communications 137, 528 (2006).
http://dx.doi.org/10.1016/j.ssc.2006.01.014
15.
J. Takaobushi, H. Tanaka, T. Kawai, S. Ueda, J.-J. Kim, M. Kobata, E. Ikenaga, M. Yabashi, K. Kobayashi, Y. Nishino, D. Miwa, K. Tamasaku, and T. Ishikawa, Appl. Phys. Lett. 89, 242507 (2006).
http://dx.doi.org/10.1063/1.2405389
16.
D. Venkateshvaran, M. Althammer, A. Nielsen, S. Geprägs, M. S. R. Rao, S. T. B. Goennenwein, M. Opel, and R. Gross, Phys. Rev. B 79, 134405 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.134405
17.
N. Jedrecy, C. Hebert, J. Perriere, M. Nistor, and E. Millon, J. Appl. Phys. 116, 213903 (2014).
http://dx.doi.org/10.1063/1.4903211
18.
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1539
19.
H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
20.
A. Fernández-Pacheco, J. M. De Teresa, J. Orna, L. Morellon, P. A. Algarabel, J. A. Pardo, and M. R. Ibarra, Phys. Rev. B 77, 100403(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.77.100403
21.
D. Venkateshvaran, W. Kaiser, A. Boger, M. Althammer, M. S. R. Rao, S. T. B. Goennenwein, M. Opel, and R. Gross, Phys. Rev. B 78, 092405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.092405
22.
S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. Lett. 97, 126602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.126602
23.
J. Perrière, C. Hebert, M. Nistor, E. Millon, J. J. Ganem, and N. Jedrecy, J. Mater. Chem. C 3, 11239 (2015).
http://dx.doi.org/10.1039/C5TC02090E
24.
L.P. Pryadko and A. Auerbach, Phys. Rev. Lett. 82, 1253 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1253
25.
S. Sangiao, L. Morellon, G. Simon, J. M. De Teresa, J. A. Pardo, J. Arbiol, and M. R. Ibarra, Phys. Rev. B 79, 014431 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014431
26.
T. Fukumura, H.Toyosaki, K. Ueno, M. Nakano, T. Yamasaki, and M. Kawasaki, Jpn. J. Appl. Phys. 46, 26 (2007).
http://dx.doi.org/10.1143/JJAP.46.L642
27.
Y. Lyanda-Geller, S. H. Chun, M. B. Salamon, P. M. Goldbart, P. D. Han, Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B 63, 184426 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.184426
28.
H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Nature Materials 3, 221 (2004).
http://dx.doi.org/10.1038/nmat1099
29.
M. Glunk, J. Daeubler, W. Schoch, R. Sauer, and W. Limmer, Phys. Rev. B 80, 125204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125204
30.
H.-B. Li, M. Liu, F. Lu, W.Wang, Y. Cheng, S. Song, Y. Zhang, Z. Li, J. He, H. Liu, X. Du, and R. Zheng, Appl. Phys. Lett. 106, 012401 (2015).
http://dx.doi.org/10.1063/1.4905357
31.
Y. M. Xiong, P. W. Adams, and G. Catelani, Phys. Rev. Lett. 104, 076806 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.076806
32.
Y. M. Lu, J. W. Cai, Z. Guo, and X. X. Zhang, Phys. Rev. B 87, 094405 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094405
33.
K. Ueno, T. Fukumura, H. Toyosaki, M.Nakano, and M. Kawasaki, Appl. Phys. Lett. 90, 072103 (2007).
http://dx.doi.org/10.1063/1.2535777
34.
J.M. D. Coey, M. Viret, L.Ranno, and K. Ounadjela, Phys. Rev. Lett. 75, 3910 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3910
35.
P. Wagner, I. Gordon, L. Trappeniers, J. Vanacken, F. Herlach, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 81, 3980 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3980
36.
A. Bosak, D. Chernyshov, M. Hoesch, P. Piekarz, M. Le Tacon, M. Krisch, A. Kozłowski, A. M. Oleś, and K. Parlinski, Phys. Rev. X 4, 011040 (2014).
37.
Y. Tian, L. Ye, and X. Jin, Phys. Rev. Lett. 103, 087206 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.087206
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961144
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961144
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961144
2016-08-11
2016-09-30

Abstract

We show that the well-established universal scaling σ AHE ∼ σ 1.6 between anomalous Hall and longitudinal conductivities in the low conductivity regime (σ < 104 Ω−1 cm−1) transforms into the scaling σ AHE ∼ σ 2 at the onset of strong electron localization. The crossover between the two relations is observed in magnetite-derived Zn FeO thin films where an insulating/hopping regime follows a bad metal/hopping regime below the Verwey transition temperature T. Our results demonstrate that electron localization effects come into play in the anomalous Hall effect (AHE) modifying significantly the scaling exponent. In addition, the thermal evolution of the anomalous Hall resistivity suggests the existence of spin polarons whose size would decrease below T.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961144.html;jsessionid=y1v4SQN_samO89Zv6FLbfy8k.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961144&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961144&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961144'
Right1,Right2,Right3,