Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961463
1.
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
2.
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, Energy & Environmental Science (2016).
3.
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, Scientific reports 2 (2012).
4.
G. Hodes, Science 342, 317 (2013).
http://dx.doi.org/10.1126/science.1245473
5.
M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
6.
D. B. Mitzi, C. Feild, Z. Schlesinger, and R. Laibowitz, Journal of Solid State Chemistry 114, 159 (1995).
http://dx.doi.org/10.1006/jssc.1995.1023
7.
Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, Dalton Transactions 40, 5563 (2011).
http://dx.doi.org/10.1039/c0dt01601b
8.
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorganic chemistry 52, 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
9.
T. Yokoyama, D. H. Cao, C. C. Stoumpos, T.-B. Song, Y. Sato, S. Aramaki, and M. G. Kanatzidis, The Journal of Physical Chemistry Letters 7, 776 (2016).
http://dx.doi.org/10.1021/acs.jpclett.6b00118
10.
P. Umari, E. Mosconi, and F. De Angelis, Scientific reports 4 (2014).
http://dx.doi.org/10.1038/srep04467
11.
J. Im, C. C. Stoumpos, H. Jin, A. J. Freeman, and M. G. Kanatzidis, The Journal of Physical Chemistry Letters 6, 3503 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01738
12.
C. Kagan, D. Mitzi, and C. Dimitrakopoulos, Science 286, 945 (1999).
http://dx.doi.org/10.1126/science.286.5441.945
13.
C. Bernal and K. Yang, The Journal of Physical Chemistry C 118, 24383 (2014).
http://dx.doi.org/10.1021/jp509358f
14.
N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, and M. B. Johnston, Energy & Environmental Science 7, 3061 (2014).
http://dx.doi.org/10.1039/C4EE01076K
15.
F. Hao, C. C. Stoumpos, D. H. Cao, R. P. Chang, and M. G. Kanatzidis, Nature Photonics 8, 489 (2014).
http://dx.doi.org/10.1038/nphoton.2014.82
16.
D. Mitzi and K. Liang, Journal of Solid State Chemistry 134, 376 (1997).
http://dx.doi.org/10.1006/jssc.1997.7593
17.
Y. Chang, C. Park, and K. Matsuishi, JOURNAL-KOREAN PHYSICAL SOCIETY 44, 889 (2004).
http://dx.doi.org/10.3938/jkps.44.638
18.
R. W. RE and M. W. MA, Can. J. Chem. 68, 412 (1990).
http://dx.doi.org/10.1139/v90-063
19.
P. Gao, M. Grätzel, and M. K. Nazeeruddin, Energy & Environmental Science 7, 2448 (2014).
http://dx.doi.org/10.1039/C4EE00942H
20.
F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. Chang, and M. G. Kanatzidis, Journal of the American Chemical Society 137, 11445 (2015).
http://dx.doi.org/10.1021/jacs.5b06658
21.
Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan, and J. Ding, RSC Advances 5, 60562 (2015).
http://dx.doi.org/10.1039/C5RA09110A
22.
J. S. Yun, A. Ho-Baillie, S. Huang, S. H. Woo, Y. Heo, J. Seidel, F. Huang, Y.-B. Cheng, and M. A. Green, The Journal of Physical Chemistry Letters 6, 875 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00182
23.
N. Adhikari, A. Dubey, D. Khatiwada, A. F. Mitul, Q. Wang, S. Venkatesan, A. Iefanova, J. Zai, X. Qian, and M. Kumar, ACS applied materials & interfaces (2015).
24.
Y. Yan, C.-S. Jiang, R. Noufi, S.-H. Wei, H. Moutinho, and M. Al-Jassim, Physical review letters 99, 235504 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.235504
25.
O. G. Reid, K. Munechika, and D. S. Ginger, Nano letters 8, 1602 (2008).
http://dx.doi.org/10.1021/nl080155l
26.
O. Douhéret, L. Lutsen, A. Swinnen, M. Breselge, K. Vandewal, L. Goris, and J. Manca, Applied physics letters 89, 032107 (2006).
http://dx.doi.org/10.1063/1.2227846
27.
R. Marsh, C. McNeill, A. Abrusci, A. Campbell, and R. H. Friend, Nano letters 8, 1393 (2008).
http://dx.doi.org/10.1021/nl080200p
28.
M. Dante, J. Peet, and T.-Q. Nguyen, The Journal of Physical Chemistry C 112, 7241 (2008).
http://dx.doi.org/10.1021/jp712086q
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961463
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961463
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961463
2016-08-16
2016-12-06

Abstract

Lead free CHNHSnI perovskite thin film was prepared by low temperature solution processing and characterized using current sensing atomic force microscopy (CS-AFM). Analysis of electrical, optical, and optoelectrical properties reveals unique p-type semiconducting nature and metal like conductivity of this material. CHNHSnI film also showed a strong absorption in visible and near infrared spectrum with absorption onset of 1.3 eV. X-ray Diffraction analysis and scanning electron microscopy (SEM) confirmed a structure of this compound and uniform film formation. The morphology, film uniformity, light harvesting and electrical properties strongly depend on preparation method and precursor solution. CHNHSnI films prepared based on dimethylformamide (DMF) showed higher crystallinity and light harvesting capability compared to the film based on combination of dimethyl sulfoxide (DMSO) with gamma-butyrolactone (GBL). Local photocurrent mapping analysis showed that CHNHSnI can be used as an active layer and have a potential to fabricate lead free photovoltaic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961463.html;jsessionid=QamKU6sHL7rzdEM_fEkgpuzB.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961463&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961463&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961463'
Right1,Right2,Right3,