Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961498
1.
S.H. Salter, Nature 249, 720 (1974).
http://dx.doi.org/10.1038/249720a0
2.
J. Falnes, Marine Structures 20, 185 (2007).
http://dx.doi.org/10.1016/j.marstruc.2007.09.001
3.
A. Clément, P. McCullen, A. Falcão, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis, T. Lewis, K. Nielsen, S. Petroncini, M.-T. Pontes, P. Schild, B.-O. Sjöström, H.C. Sørensen, and T. Thorpe, Renewable and Sustainable Energy Reviews 6, 405 (2002).
http://dx.doi.org/10.1016/S1364-0321(02)00009-6
4.
M. Fadaeenejad, R. Shamsipour, S.D. Rokni, and C. Gomes, Renewable and Sustainable Energy Reviews 29, 345 (2014).
http://dx.doi.org/10.1016/j.rser.2013.08.077
5.
D.T. Swift-Hook, B.M. Count, I. Glendenning, and S. Salter, Nature 254, 504 (1975).
http://dx.doi.org/10.1038/254504a0
6.
D. Zhang, G. Aggidis, Y. Wang, A. Mccabe, and W. Li, Applied Physics Letters 103, 103901 (2013).
http://dx.doi.org/10.1063/1.4820435
7.
R. Waters, M. Stålberg, O. Danielsson, O. Svensson, S. Gustafsson, E. Strömstedt, M. Eriksson, J. Sundberg, and M. Leijon, Applied Physics Letters 90, 34105 (2007).
http://dx.doi.org/10.1063/1.2432168
8.
J.P. Kofoed, P. Frigaard, E. Friis-Madsen, and H.C. Sørensen, Renewable Energy 31, 181 (2006).
http://dx.doi.org/10.1016/j.renene.2005.09.005
9.
H. Polinder, M.E.C. Damen, and F. Gardner, IEEE Transactions on Energy Conversion 19, 583 (2004).
http://dx.doi.org/10.1109/TEC.2004.827717
10.
C.M. Linton and D.V. Evans, Journal of Fluid Mechanics 215, 549 (1990).
http://dx.doi.org/10.1017/S0022112090002750
11.
C.C. Mei, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 370, 208 (2012).
http://dx.doi.org/10.1098/rsta.2011.0178
12.
J. Engström, V. Kurupath, J. Isberg, and M. Leijon, Journal of Applied Physics 110, 124904 (2011).
http://dx.doi.org/10.1063/1.3664855
13.
M. Leijon, O. Danielsson, M. Eriksson, K. Thorburn, H. Bernhoff, J. Isberg, J. Sundberg, I. Ivanova, E. Sjöstedt, O. Ågren, K.E. Karlsson, and A. Wolfbrandt, Renewable Energy 31, 1309 (2006).
http://dx.doi.org/10.1016/j.renene.2005.07.009
14.
M. Leijon, H. Bernhoff, O. Agren, J. Isberg, J. Sundberg, M. Berg, K.E. Karlsson, and A. Wolfbrandt, IEEE Transactions on Energy Conversion 20, 219 (2005).
http://dx.doi.org/10.1109/TEC.2004.827709
15.
J. Engström, M. Eriksson, J. Isberg, and M. Leijon, Journal of Applied Physics 106, 64512 (2009).
http://dx.doi.org/10.1063/1.3233656
16.
J. Isberg, J. Engström, M. Eriksson, and M. Göteman, International Journal of Marine Energy 11, 1 (2015).
http://dx.doi.org/10.1016/j.ijome.2015.03.002
17.
M. Eriksson, R. Waters, O. Svensson, J. Isberg, and M. Leijon, Journal of Applied Physics 102, 84910 (2007).
http://dx.doi.org/10.1063/1.2801002
18.
C. Boström, B. Ekergård, and M. Leijon, Applied Physics Letters 100, 43511 (2012).
http://dx.doi.org/10.1063/1.3680097
19.
L. Wang, J. Engström, M. Göteman, and J. Isberg, Journal of Renewable and Sustainable Energy 7, 43127 (2015).
http://dx.doi.org/10.1063/1.4928677
20.
L. Wang and J. Isberg, Energies 8, 6528 (2015).
http://dx.doi.org/10.3390/en8076528
21.
B. Borgarino, A. Babarit, and P. Ferrant, Ocean Engineering 41, 79 (2012).
http://dx.doi.org/10.1016/j.oceaneng.2011.12.025
22.
J. Falnes and J. Hals, Phil. Trans. R. Soc. A 370, 246 (2012).
http://dx.doi.org/10.1098/rsta.2011.0249
23.
J. Engström, M. Eriksson, M. Göteman, J. Isberg, and M. Leijon, Journal of Applied Physics 114, 204502 (2013).
http://dx.doi.org/10.1063/1.4833241
24.
J. Cruz, R. Sykes, P. Siddorn, and R.E. Taylor, IET Renewable Power Generation 4, 488 (2010).
http://dx.doi.org/10.1049/iet-rpg.2009.0174
25.
C. Boström and M. Leijon, IET Renewable Power Generation 5, 245 (2011).
http://dx.doi.org/10.1049/iet-rpg.2010.0153
26.
J. Falnes, Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction (Cambridge University Press, Cambridge, 2002), p. 11.
27.
A. Babarit, Renewable Energy 58, 68 (2013).
http://dx.doi.org/10.1016/j.renene.2013.03.008
28.
U.A. Korde, Ocean Engineering 26, 625 (1999).
http://dx.doi.org/10.1016/S0029-8018(98)00017-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961498
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961498
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961498
2016-08-17
2016-12-03

Abstract

It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961498.html;jsessionid=ahBZZ9G7k_xhC9L7Hs-_w88J.x-aip-live-03?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961498&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961498&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961498'
Right1,Right2,Right3,