Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. Guo, G. X. Xie, and J. B. Luo, J. Phys. D 47, 013001 (2014).
S. Luo, J. Wang, G. Xia, and Z. Li, J. Fluid Mech. 795, 443 (2016).
C. Q. Ru, J. Appl. Phys. 105, 124701 (2009).
B. Li, F. Jia, Y. P. Cao, X. Q. Feng, and H. J. Gao, Phys. Rev. Lett. 106, 234301 (2011).
W. W. Gerberich, W. M. Mook, C. R. Perrey, C. B. Carter, M. I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P. H. McMurry, and S. L. Girshick, J. Mech. Phys. Solids 51, 979 (2003).
W. M. Mook, J. D. Nowak, C. R. Perrey, C. B. Carter, R. Mukherjee, S. L. Girshick, P. H. McMurry, and W. W. Gerberich, Phys. Rev. B 75, 214112 (2007).
S. Armini, I. U. Vakarelski, C. M. Whelan, K. Maex, and K. Higashitani, Langmuir 23, 2007 (2007).
M. Ramos, L. Ortiz-Jordan, A. Hurtado-Macias, S. Flores, J. T. Elizalde-Galindo, C. Rocha, B. Torres, M. Zarei-Chaleshtori, and R. R. Chianelli, Materials 6, 198 (2013).
P. Armstrong and W. Peukert, J. Nanopart. Res. 14, 1288 (2012).
Y. Ding, X. R. Niu, and G. F. Wang, J. Phys. D. 48, 485803 (2015).
Z. L. Wang, J. Phys. Chem. B 104, 1153 (2000).
Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. 48, 60 (2009).
Y. G. Sun and Y. N. Xia, Science 298, 2176 (2002).
G. F. Wei and Z. P. Liu, Chem. Sci. 6, 1485 (2015).
C. Wang, H. Daimon, T. Onodera, T. Koda, and S. H. Sun, Angew. Chem. 47, 3588 (2008).
G. Q. Li, H. Kobayashi, S. Dekura, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Matsumura, and H. Kitagawa, J. Am. Chem. Soc. 136, 10222 (2014).
C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang, and R. Gao, Sensors 10, 2088 (2010).
D. Mordehai, S. W. Lee, B. Backes, D. J. Srolovitz, W. D. Nix, and E. Rabkin, Acta. Mater. 59, 5202 (2011).
G. F. Wang, J. J. Bian, J. Feng, and X. Q. Feng, Mater. Res. Expr. 2, 015006 (2015).
S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).
K. L. Johnson, Contact Mechanics (Cambridge University Press, London, 1985), p. 92.
T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, and S. Suresh, J. Mech. Phys. Solids 52, 691 (2004).

Data & Media loading...


Article metrics loading...



Metallic nanoparticles are usually polyhedrons instead of perfect spheres, which presents a challenge to characterize their elastic response. In the present paper, the elastic compression of truncated octahedral nanoparticles is investigated through finite element calculations and atomic simulations. An analytical expression of load is obtained for octahedral particles, which is linearly proportional to indent depth, instead of the 3/2 power law relation predicted by Hertzian model for elastic sphere. Comparisons with molecular dynamics simulations demonstrate that the obtained relation can predict the elastic response of polyhedral nanoparticles. This study is helpful to measure the elastic properties of polyhedral nanoparticles, and characterize their elastic response.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd