Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961641
1.
J. Watson and G. Castro, J. Mater. Sci.: Mater. Electron. 26, 9226 (2015).
http://dx.doi.org/10.1007/s10854-015-3459-4
2.
T. Stevenson, D. G. Martin, P. I. Cowin, A. Blumfield, A. J. Bell, T. P. Comyn, and P. M. Weaver, J. Mater. Sci.: Mater. Electron. 26, 9256 (2015).
http://dx.doi.org/10.1007/s10854-015-3629-4
3.
B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971).
4.
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
5.
J. Rödel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03061.x
6.
R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S. E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001).
http://dx.doi.org/10.1143/JJAP.40.5999
7.
I. Sterianou, D. C. Sinclair, I. M. Reaney, T. P. Comyn, and A. J. Bell, J. Appl. Phys. 106, 084107 (2009).
http://dx.doi.org/10.1063/1.3253585
8.
S. A. Fedulov, P. B. Ladyzhinskii, I. L. Pyatigorskaya, and Y. N. Venectsev, Sov. Phys. Solid State 6, 375 (1964).
9.
R. T. Smith, G. D. Achenbach, R. Gerson, and W. J. James, J. Appl. Phys. 39, 70 (1968).
http://dx.doi.org/10.1063/1.1655783
10.
W. M. Zhu, H. Y. Guo, and Z. G. Ye, Phys. Rev. B 78, 014401 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.014401
11.
R. Ranjan and K. A. Raju, Phys. Rev. B 82, 054119 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.054119
12.
S. Bhattacharjee, K. Taji, C. Moriyoshi, Y. Kuroiwa, and D. Pandey, Phys. Rev. B 84, 104116 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104116
13.
I. Ueda and S. Ikegami, Jpn. J. Appl. Phys. 7, 236 (1968).
http://dx.doi.org/10.1143/JJAP.7.236
14.
J. Chen, X. R. Xing, C. Sun, P. H. Hu, R. B. Yu, X. W. Wang, and L. H. Li, J. Am. Chem. Soc. 130, 1144 (2008).
http://dx.doi.org/10.1021/ja7100278
15.
F. F. An, W. Z. He, T. T. Wang, and J. Yu, Ferroelectrics 409, 62 (2010).
http://dx.doi.org/10.1080/00150193.2010.485914
16.
S. M. Selbach, M. A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2009).
http://dx.doi.org/10.1021/cm802607p
17.
L. L. Zhang, J. Yu, and M. Itoh, J. Appl. Phys. 115, 123523 (2014).
http://dx.doi.org/10.1063/1.4869743
18.
X. B. Hou and J. Yu, J. Am. Ceram. Soc. 96, 2218 (2013).
http://dx.doi.org/10.1111/jace.12324
19.
L. L. Zhang, X. B. Hou, and J. Yu, Jpn. J. Appl. Phys. 54, 081501 (2015). And references therein.
http://dx.doi.org/10.7567/JJAP.54.081501
20.
X. B. Hou and J. Yu, Jpn. J. Appl. Phys. 52, 061501 (2013).
http://dx.doi.org/10.7567/JJAP.52.061501
21.
B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S. E. Park, Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
22.
R. Guo, L. E. Cross, S. E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5423
23.
L. L. Zhang and J. Yu, Appl. Phys. Lett. 106, 112907 (2015).
http://dx.doi.org/10.1063/1.4916231
24.
M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero, and M. Villegas, J. Euro. Ceram. Soc. 31, 3047 (2011).
http://dx.doi.org/10.1016/j.jeurceramsoc.2011.03.018
25.
C. J. Stringer, T. R. Shrout, C. A. Randall, and I. M. Reaney, J. Appl. Phys. 99, 024106 (2006).
http://dx.doi.org/10.1063/1.2163986
26.
J. Yu, F. F. An, and F. Cao, Jpn. J. Appl. Phys. 53, 051501 (2014).
http://dx.doi.org/10.7567/JJAP.53.051501
27.
I. C. Noyan and J. B. Cohen, Residual Stress Measurement by Diffraction and Interpretation (Springer Verlag, New York, 1987).
28.
I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, T. Watanabe, J. Hayashi, H. Yabuta, M. Kubota, T. Fukui, and S. Wada, Jpn. J. Appl. Phys. 50, 09ND07 (2011).
http://dx.doi.org/10.7567/JJAP.50.09ND07
29.
Y. Lin, L. L. Zhang, W. L. Zheng, and J. Yu, J. Mater. Sci.: Mater. Electron. 26, 7351 (2015).
http://dx.doi.org/10.1007/s10854-015-3364-x
30.
P. Duran, J. F. Fdez Lozano, F. Capel, and C. Moure, J. Mater. Sci. 23, 4463 (1988).
http://dx.doi.org/10.1007/BF00551945
31.
J. Chen, L. L. Fan, Y. Ren, Z. Pan, J. X. Deng, R. B. Yu, and X. R. Xing, Phys. Rev. Lett. 110, 115901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.115901
32.
J. Bennett, A. J. Bell, T. J. Stevenson, and T. P. Comyn, Appl. Phys. Lett. 103, 152901 (2013).
http://dx.doi.org/10.1063/1.4824652
33.
W. Hu, X. L. Tan, and K. Rajan, J. Euro. Ceram. Soc. 31, 801 (2011).
http://dx.doi.org/10.1016/j.jeurceramsoc.2010.11.015
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961641
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961641
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961641
2016-08-19
2016-12-06

Abstract

For low dielectric loss perovskite-structured (1-x-y)BiFeO-xBi(ZnTi)O-yPbTiO (BF-BZT-PT) (x = 0.04-0.15 and y = 0.15-0.26) ceramics in rhombohedral/tetragonal coexistent phase, structural phase transitions were studied using differential thermal analyzer combined with temperature-dependent dielectric measurement. Two lattice structural phase transitions are disclosed in various BF-BZT-PT perovskites, which is different from its membership of BiFeO exhibiting just one lattice structural phase transition at Curie temperature = 830oC. Consequently, residual internal tensile stresses were revealed experimentally through XRD measurements on ceramic pellets and counterpart powders, which are reasonably attributed to special structural phase transition sequence of BF-BZT-PT solid solution perovskites. Low piezoresponse was observed and argued extrinsically resulting from residual tensile stresses pinning ferroelectric polarization switching. Post-annealing and subsequent quenching was found effective for eliminating residual internal stresses in those BZT-less ceramics, and good piezoelectric property of ≥ 28 pC/N obtained for 0.70BF-0.08BZT-0.22PT and 0.05 wt% MnO-doped 0.70BF-0.04BZT-0.26PT ceramics with ≥ 640oC, while it seemed no effective for those BZT-rich BF-BZT-PT ceramics with x = 0.14 and 0.15 studied here.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961641.html;jsessionid=jufsgwM0Nlemc4FnsertK_Zb.x-aip-live-03?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961641&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961641&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961641'
Right1,Right2,Right3,