Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Kroemer, Rev. Mod. Phys. 73, 783 (2001).
J. Chakhalian, A. J. Millis, and J. Rondinelli, Nat. Mater. 11, 92-4 (2012).
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103-13 (2012).
E. Dagotto, Science 309, 257 (2005).
A. Ohtomo and H. Y. Hwang, Nature 427, 423-426 (2004).
K. P. Rajeev, G. V. Shivashankar, and A. K. Raychaudhuri, Solid State Commun. 79, 591-5 (1991).
P. D. C. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Bozovic, D. G. Schlom, and K. M. Shen, Nat. Nanotechnol. 11, 92-4 (2012).
R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, and J. M. Triscone, Phys. Rev. Lett. 106, 246403 (2011).
J. Son, P. Moetakef, J. M. LeBeau, D. Ouellette, L. Balents, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 96, 062114 (2010).
D. Bao, N. Mizutani, X. Yao, and L. Zhang, Appl. Phys. Lett. 77, 1041 (2000).
M. -S. Chen, T. -B. Wu, and J. -M. Wu, Appl. Phys. Lett. 68, 1430 (1996).
C. M. Chu and P. Lin, Appl. Phys. Lett. 70, 249 (1997).
H. Zhang, X. Chen, T. Wang, F. Wang, and W. Shi, Journal of Alloys and Compounds 500, 46 (2010).
A. V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V. K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, G. Cristiani, H. -U. Habermeier, and B. Keimer, Science 332, 937 (2011).
Y. W. Cao, X. R. Liu, M. Kareev, D. Choudhury, S. Middey, D. Meyers, J. -W. Kim, P. J. Ryan, J. W. Freeland, and J. Chakhalian, Nat. Commun. 7, 10418 (2016).
M. Gibert, P. Zubko, R. Scherwitzl, J. Iniguez, and J. M. Triscone, Nat. Mater. 11, 195-8 (2012).
J. Liu, S. Okamoto, M. van Veenendaal, M. Kareev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Phys. Rev. B 83, 161102(R) (2011).
J. Chaloupka and G. Khaliullin, Phys. Rev. Lett. 100, 016404 (2008).
P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O. K. Andersen, and K. Held, Phys. Rev. Lett. 103, 016401 (2009).
D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Nat. commun. 2, 596 (2011).
K. -Y. Yang, W. Zhu, D. Xiao, S. Okamoto, Z. Wang, and Y. Ran, Phys. Rev. B 84, 201104(R) (2011).
D. Doennig, W. E. Pickett, and R. Pentcheva, Phys. Rev. B 89, 121110(R) (2014).
A. Li, C. Ge, P. L, and N. Ming, Appl. Phys. Lett. 68, 1347 (1996).
X. -J. Meng, J. -L. Sun, J. Yu, H. -J. Ye, S. -L. Guo, and J.-H. Chu, Applied Surface Science 171, 68-70 (2001).
K. M. Satyalakshmi, R. M. Mallya, K. V. Ramanathan, X. D. Wu, B. Brainard, D. C. Gautier, N. Y. Vasanthacharya, and M. S. Hegde, Appl. Phys. Lett. 62, 1233 (1993).
H. K. Yoo, S. I. Hyun, Y. J. Chang, L. Moreschini, C. H. Sohn, H. -D. Kim, A. Bostwick, E. Rotenberg, J. H. Shim, and T. W. Noh, Phys. Rev. B 93, 035141 (2016).
E. J. Monkman, C. Adamo, J. A. Mundy, D. E. Shai, J. W. Harter, D. W. Shen, B. Burganov, D. A. Muller, D. G. Schlom, and K. M. Shen, Nat. Mater. 11, 855-9 (2012).
D. G. Schlom, APL Materials 3, 062403 (2012).
D. G. Schlom, L. -Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc. 91, 24292454 (2008).
A. T. Bollinger, J. Wu, and I. Bozovic, APL Materials 4, 053205 (2016).
G. Logvenov, A. Gozar, and I. Bozovic, Science 326, 699-702 (2009).
H. F. Yang, Z. T. Liu, C. C. Fan, Q. Yao, P. Xiang, K. L. Zhang, M. Y. Li, H. Li, J. S. Liu, D. W. Shen, and M. H. Jiang, Phys. Rev. B 93, 121102(R) (2016).
C. M. Brooks, L. F. Kourkoutis, T. Heeg, J. Schubert, D. A. Muller, and D. G. Schlom, Appl. Phys. Lett. 94, 162905 (2009).
J. L. Blok, X. Wan, G. Koster, D. H. A. Blank, and G. Rijnders, Appl. Phys. Lett. 99, 151917 (2011).
S. Middey, P. Rivero, D. Meyers, M. Kareev, X. Liu, Y. Cao, J. W. Freeland, S. Barraza-Lopez, and J. Chakhalian, Scientific Reports 4, 6819 (2014).
N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204-9 (2006).
E. Detemple, Q. M. Ramasse, W. Sigle, G. Cristiani, H. -U. Habermeier, E. Benckiser, A. V. Boris, A. Frano, P. Wochner, M. Wu, B. Keimer, and P. A. van Aken, Appl. Phys. Lett. 99, 211903 (2011).
J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett. 96, 133111 (2010).

Data & Media loading...


Article metrics loading...



By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO and iso-polarity LaAlO substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO (111) substrate was more suitable than Nb-doped SrTiO. reflection high-energy electron diffraction, high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO based superlattices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd