Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng., R 83, 1 (2014).
J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).
L. Goux and I. Valov, Phys. Status Solidi A 213, 274 (2016).
S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, Adv. Funct. Mater. 25, 6306 (2015).
Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
F. Zhuge, J. Li, H. Chen, J. Wang, L. Zhu, B. Bian, B. Fu, Q. Wang, L. Li, R. Pan, L. Liang, H. Zhang, H. Cao, H. Zhang, Z. Li, J. Gao, and K. Li, Appl. Phys. Lett. 106, 083104 (2015).
S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, Adv. Mater. 26, 3885 (2014).
I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, and R. Waser, Nat. Commun. 4, 1771 (2013).
T. Tsuruoka, I. Valov, S. Tappertzhofen, J. van den Hurk, T. Hasegawa, R. Waser, and M. Aono, Adv. Funct. Mater. 25, 6374 (2015).
K. Krishnan, T. Tsuruoka, C. Mannequin, and M. Aono, Adv. Mater. 28, 640 (2016).
D. Liu, H. Cheng, G. Wang, X. Zhu, and N. Wang, J. Appl. Phys. 114, 154906 (2013).
C.-P. Hsiung, H.-W. Liao, J.-Y. Gan, T.-B. Wu, J.-C. Hwang, F. Chen, and M.-J. Tsai, ACS Nano 4, 5414 (2010).
T. Liu, M. Verma, Y. Kang, and M. Orlowski, Appl. Phys. Lett. 101, 073510 (2012).
W. Chen, H. J. Barnaby, and M. N. Kozicki, IEEE Electron Device Lett. 37, 580 (2016).
H. Jan van den, L. Eike, Z. Hehe, W. Rainer, and V. Ilia, Nanotechnology 25, 425202 (2014).
Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, and C. Tao, Nanotechnology 26, 391001 (2015).
X. Zhao, H. Xu, Z. Wang, L. Zhang, J. Ma, and Y. Liu, Carbon 91, 38 (2015).
S. La Barbera, D. Vuillaume, and F. Alibart, ACS Nano 9, 941 (2015).
K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).
A. Mehonic, A. Vrajitoarea, S. Cueff, S. Hudziak, H. Howe, C. Labbé, R. Rizk, M. Pepper, and A. J. Kenyon, Sci. Rep. 3, 2708 (2013).
S. Gao, C. Chen, Z. Zhai, H. Y. Liu, Y. S. Lin, S. Z. Li, S. H. Lu, G. Y. Wang, C. Song, F. Zeng, and F. Pan, Appl. Phys. Lett. 105, 063504 (2014).
T. Tohru, H. Tsuyoshi, T. Kazuya, and A. Masakazu, Nanotechnology 23, 435705 (2012).
X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, and R.-W. Li, Adv. Mater. 24, 3941 (2012).
J. Song, A. Prakash, D. Lee, J. Woo, E. Cha, S. Lee, and H. Hwang, Appl. Phys. Lett. 107, 113504 (2015).
J. Yoo, J. Woo, J. Song, and H. Hwang, AIP Advances 5, 127221 (2015).
K. Krishnan, M. Aono, and T. Tsuruoka, Nanoscale (2016).
Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, IEEE Electron Device Lett. 31, 117 (2010).
W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, Appl. Phys. Lett. 93, 223506 (2008).
S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and M. Aono, ACS Nano 7, 6396 (2013).
M. Cedric, T. Tohru, H. Tsuyoshi, and A. Masakazu, Jpn. J. Appl. Phys. 55, 06GG08 (2016).
U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst, Nano Lett. 14, 2401 (2014).
J. Woo, D. Lee, E. Cha, S. Lee, S. Park, and H. Hwang, IEEE Electron Device Lett. 35, 60 (2014).
H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, and X. Chen, Adv. Funct. Mater. 25, 3825 (2015).
C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, and R.-W. Li, Chem. Commun. 52, 4828 (2016).

Data & Media loading...


Article metrics loading...



A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag + ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd