Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961709
1.
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
2.
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng., R 83, 1 (2014).
http://dx.doi.org/10.1016/j.mser.2014.06.002
3.
J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).
http://dx.doi.org/10.1038/nnano.2012.240
4.
L. Goux and I. Valov, Phys. Status Solidi A 213, 274 (2016).
http://dx.doi.org/10.1002/pssa.201532813
5.
S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, Adv. Funct. Mater. 25, 6306 (2015).
http://dx.doi.org/10.1002/adfm.201500825
6.
Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
http://dx.doi.org/10.1002/adma.201104104
7.
Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
http://dx.doi.org/10.1021/nl900006g
8.
F. Zhuge, J. Li, H. Chen, J. Wang, L. Zhu, B. Bian, B. Fu, Q. Wang, L. Li, R. Pan, L. Liang, H. Zhang, H. Cao, H. Zhang, Z. Li, J. Gao, and K. Li, Appl. Phys. Lett. 106, 083104 (2015).
http://dx.doi.org/10.1063/1.4913588
9.
S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, Adv. Mater. 26, 3885 (2014).
http://dx.doi.org/10.1002/adma.201306250
10.
I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, and R. Waser, Nat. Commun. 4, 1771 (2013).
http://dx.doi.org/10.1038/ncomms2784
11.
T. Tsuruoka, I. Valov, S. Tappertzhofen, J. van den Hurk, T. Hasegawa, R. Waser, and M. Aono, Adv. Funct. Mater. 25, 6374 (2015).
http://dx.doi.org/10.1002/adfm.201500853
12.
K. Krishnan, T. Tsuruoka, C. Mannequin, and M. Aono, Adv. Mater. 28, 640 (2016).
http://dx.doi.org/10.1002/adma.201504202
13.
D. Liu, H. Cheng, G. Wang, X. Zhu, and N. Wang, J. Appl. Phys. 114, 154906 (2013).
http://dx.doi.org/10.1063/1.4826362
14.
C.-P. Hsiung, H.-W. Liao, J.-Y. Gan, T.-B. Wu, J.-C. Hwang, F. Chen, and M.-J. Tsai, ACS Nano 4, 5414 (2010).
http://dx.doi.org/10.1021/nn1010667
15.
T. Liu, M. Verma, Y. Kang, and M. Orlowski, Appl. Phys. Lett. 101, 073510 (2012).
http://dx.doi.org/10.1063/1.4746276
16.
W. Chen, H. J. Barnaby, and M. N. Kozicki, IEEE Electron Device Lett. 37, 580 (2016).
http://dx.doi.org/10.1109/LED.2016.2540361
17.
H. Jan van den, L. Eike, Z. Hehe, W. Rainer, and V. Ilia, Nanotechnology 25, 425202 (2014).
http://dx.doi.org/10.1088/0957-4484/25/42/425202
18.
Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, and C. Tao, Nanotechnology 26, 391001 (2015).
http://dx.doi.org/10.1088/0957-4484/26/39/391001
19.
X. Zhao, H. Xu, Z. Wang, L. Zhang, J. Ma, and Y. Liu, Carbon 91, 38 (2015).
http://dx.doi.org/10.1016/j.carbon.2015.04.031
20.
S. La Barbera, D. Vuillaume, and F. Alibart, ACS Nano 9, 941 (2015).
http://dx.doi.org/10.1021/nn506735m
21.
K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).
http://dx.doi.org/10.1038/nature03190
22.
A. Mehonic, A. Vrajitoarea, S. Cueff, S. Hudziak, H. Howe, C. Labbé, R. Rizk, M. Pepper, and A. J. Kenyon, Sci. Rep. 3, 2708 (2013).
http://dx.doi.org/10.1038/srep02708
23.
S. Gao, C. Chen, Z. Zhai, H. Y. Liu, Y. S. Lin, S. Z. Li, S. H. Lu, G. Y. Wang, C. Song, F. Zeng, and F. Pan, Appl. Phys. Lett. 105, 063504 (2014).
http://dx.doi.org/10.1063/1.4893277
24.
T. Tohru, H. Tsuyoshi, T. Kazuya, and A. Masakazu, Nanotechnology 23, 435705 (2012).
http://dx.doi.org/10.1088/0957-4484/23/43/435705
25.
X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, and R.-W. Li, Adv. Mater. 24, 3941 (2012).
http://dx.doi.org/10.1002/adma.201201506
26.
J. Song, A. Prakash, D. Lee, J. Woo, E. Cha, S. Lee, and H. Hwang, Appl. Phys. Lett. 107, 113504 (2015).
http://dx.doi.org/10.1063/1.4931136
27.
J. Yoo, J. Woo, J. Song, and H. Hwang, AIP Advances 5, 127221 (2015).
http://dx.doi.org/10.1063/1.4938548
28.
K. Krishnan, M. Aono, and T. Tsuruoka, Nanoscale (2016).
29.
Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, IEEE Electron Device Lett. 31, 117 (2010).
http://dx.doi.org/10.1109/LED.2009.2036276
30.
W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, Appl. Phys. Lett. 93, 223506 (2008).
http://dx.doi.org/10.1063/1.3039079
31.
S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and M. Aono, ACS Nano 7, 6396 (2013).
http://dx.doi.org/10.1021/nn4026614
32.
M. Cedric, T. Tohru, H. Tsuyoshi, and A. Masakazu, Jpn. J. Appl. Phys. 55, 06GG08 (2016).
http://dx.doi.org/10.7567/JJAP.55.06GG08
33.
U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst, Nano Lett. 14, 2401 (2014).
http://dx.doi.org/10.1021/nl500049g
34.
J. Woo, D. Lee, E. Cha, S. Lee, S. Park, and H. Hwang, IEEE Electron Device Lett. 35, 60 (2014).
http://dx.doi.org/10.1109/LED.2013.2290120
35.
H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, and X. Chen, Adv. Funct. Mater. 25, 3825 (2015).
http://dx.doi.org/10.1002/adfm.201501389
36.
C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, and R.-W. Li, Chem. Commun. 52, 4828 (2016).
http://dx.doi.org/10.1039/C6CC00989A
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961709
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961709
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961709
2016-08-23
2016-12-07

Abstract

A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag + ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961709.html;jsessionid=rxlR8NZB0s_LvtQeJHUYdfij.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961709&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961709&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961709'
Right1,Right2,Right3,