Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961711
1.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
2.
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
http://dx.doi.org/10.1126/science.1083212
3.
L. Wang, M. Yoon, G. Lu, Y. Yang, A. Facchetti, and T.J. Marks, Nature materials 5, 893 (2006).
http://dx.doi.org/10.1038/nmat1755
4.
C. G. Lee and A. Dodabalapur, Appl. Phys. Lett. 96, 243501 (2010).
http://dx.doi.org/10.1063/1.3454241
5.
C. G. Choi, S. J. Seo, and B. Bae, Electrochem. Solid-State Lett. 11, H7 (2008).
http://dx.doi.org/10.1149/1.2800562
6.
H. S. Kim, P. D. Byrne, A. Facchetti, and T.J. Marks, J. Am. Chem. Soc. 130, 12580 (2008).
http://dx.doi.org/10.1021/ja804262z
7.
D. Lee, Y.J. Chang, G. S. Herman, and C. H. Chang, Adv. Mater. 19, 843 (2007).
http://dx.doi.org/10.1002/adma.200600961
8.
B.S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007).
http://dx.doi.org/10.1021/ja068876e
9.
S. J. Seo, C. G. Choi, Y. H. Hwang, and B.S. Bae, J. Phys. D 42, 035106 (2009).
http://dx.doi.org/10.1088/0022-3727/42/3/035106
10.
Y. H. Kim, J. I. Han, and S. K. Park, IEEE Electron Device Lett. 33, 50 (2012).
http://dx.doi.org/10.1109/LED.2011.2171913
11.
J. S. Lee, Y. J. Kwack, and W. S. Choi, J. Korean Physical Soc. 59, 3055 (2011).
http://dx.doi.org/10.3938/jkps.59.3055
12.
W. H. Jeong, J. H. Bae, and H. J. Kim, IEEE Electron Device Lett. 33, 68 (2012).
http://dx.doi.org/10.1109/LED.2011.2173897
13.
Y. H. Hwang, J. S. Seo, J. M. Yun, and H. J. Park, NPG Asia Materials 5, e45 (2013).
http://dx.doi.org/10.1038/am.2013.11
14.
M. G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, Nature materials 10, 382 (2011).
http://dx.doi.org/10.1038/nmat3011
15.
K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus, Nature materials 10, 45 (2011).
http://dx.doi.org/10.1038/nmat2914
16.
B. Y. Su, A. H. Cheng, J. L. Wu, C. C. Lin, J. F. Tang, S. Y. Chu, and Y. D. Juang, J. Dis. Tech. 11, 6 (2015).
http://dx.doi.org/10.1109/JDT.2014.2354364
17.
C. N. Chen and J. J. Huang, Journal of applied research and technology 13, 170 (2015).
http://dx.doi.org/10.1016/j.jart.2015.06.012
18.
Y. S. Rim, W. H. Jeong, D. L. Kim, H. S. Lim, K. M. Kim, and H. J. Kim, Journal of Materials Chemistry 22, 12491 (2012).
http://dx.doi.org/10.1039/c2jm16846d
19.
P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, Appl. Phys. Lett. 100, 202106 (2012).
http://dx.doi.org/10.1063/1.4718022
20.
K. S. Kim, Y. H. Hwang, I. Hwang, and W.J. Cho, Journal of the Korean Physical Society 65, 399 (2014).
http://dx.doi.org/10.3938/jkps.65.399
21.
Y. H. Hwang, K. S. Kim, and W. J. Cho Hwang, Jpn. J. Appl. Phys. 53, 04EF12 (2014).
http://dx.doi.org/10.7567/JJAP.53.04EF12
22.
Y. J. Kim, S. Oh, B. S. Yang, S. J. Han, H. W. Lee, H. J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, ACS Appl. Mater. Interfaces 6, 14026 (2014).
http://dx.doi.org/10.1021/am503351e
23.
M. M. Masis, L. Ding, F. Dauzou, Q. Jeangros, A. Hessler-Wyser, S. Nicolay, and C. Ballif, APL Materials 2, 096113 (2014).
http://dx.doi.org/10.1063/1.4896051
24.
J. Kim, S. Bang, S. Lee, S. Shin, J. Park, H. Seo, and H. Jeon, J. Mater. Research 27, 2318 (2012).
http://dx.doi.org/10.1557/jmr.2012.199
25.
T. Kamiya, K. Nomura, and H. Hosono, Dis. Tech. 5, 273 (2009).
http://dx.doi.org/10.1109/JDT.2009.2021582
26.
J. S. Kim, M. K. Joo, M. X. Piao, S. E. Ahn, Y. H. Choi, H. K. Jang, and G. T. Kim, J. Appl. Phys. 115, 114503 (2014).
http://dx.doi.org/10.1063/1.4868630
27.
K. H. Lee, J. H. Park, Y. B. Yoo, W. S. Jang, J. Y. Oh, S. S. Chae, K. J. Moon, J. M. Myoung, and H. K. Baik, ACS Appl. Mater. Interfaces 5, 2585 (2013).
http://dx.doi.org/10.1021/am3032629
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961711
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961711
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961711
2016-08-23
2016-10-01

Abstract

Solution-processed oxide semiconductors are promising candidates for the low cost, large scale fabrication of oxide thin-film transistors (TFTs). In this work, a method using hydrogen injection and oxidation (HIO) that allows the low temperature solution processing of oxide semiconductors was demonstrated. We found that this method significantly decreases the concentration of residual species while improving the film densification. Additionally, enhanced TFT performance was confirmed following the use of processing temperatures as low as 300 °C. The proposed process is potentially applicable to the fabrication of a wide variety of solution-processed oxide semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961711.html;jsessionid=Wn_SjERM574vFdaJjnJ5_4Cl.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961711&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961711&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961711'
Right1,Right2,Right3,