Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961726
1.
S. John, Phys. Rev. Lett. 58, 2486 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2486
2.
E. Yablonovitch, Phys.Rev.Lett. 58, 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
3.
J. J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 1995).
4.
H. Altug, D. Englund, and H. Vuckovic, Nature Physics 2, 484 (2006).
http://dx.doi.org/10.1038/nphys343
5.
Z. Wang and S. Fan, Phys. Rev. E 68, 066616 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.066616
6.
A. Chutinan, S. John, and O. Toader, Phys. Rev. Lett. 90, 123901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.123901
7.
I. EI-Kady, M. M. R. Taha, and M. F. Su, Appl. Phys. Lett. 88, 253109 (2006).
http://dx.doi.org/10.1063/1.2212050
8.
A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. J. Joannopoulos, Phys.Rev.Lett. 77, 3787 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3787
9.
H. Hojo and A. Mase, J. Plasma Fusion Research 80, 89 (2004).
http://dx.doi.org/10.1585/jspf.80.89
10.
V. L. Ginzberg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, New York, Oxford, 1970).
11.
L. Shiveshwari and P. Mahto, Solid State Commun. 138, 160 (2006).
http://dx.doi.org/10.1016/j.ssc.2005.11.024
12.
B. Guo, Phys. Plasmas 16, 042508 (2009).
http://dx.doi.org/10.1063/1.3116642
13.
H. F. Zhang, L. Ma, and S. B. Liu, Optoelectronics Letters 5, 112 (2009).
http://dx.doi.org/10.1007/s11801-009-8165-0
14.
L. Shiveshwari and P. Mahto, Solid State Commun. 138, 160 (2006).
http://dx.doi.org/10.1016/j.ssc.2005.11.024
15.
S. Prasad, V. Singh, and A. K. Singh, Prog. Electromag. Res. M 21, 211 (2011).
http://dx.doi.org/10.2528/PIERM11091702
16.
H. F. Zhang, S. B. Liu, and X. K. Kong, J. Electromagn. Wave Appl. 27, 1776 (2013).
http://dx.doi.org/10.1080/09205071.2013.823361
17.
O. Sakai, Y. Kishimoto, and K. Yachibana, J. Phys. D: Appl. Phys. 38, 431 (2005).
http://dx.doi.org/10.1088/0022-3727/38/3/012
18.
W. Fan, X. Zhang, and L. Dong, Phys. Plasmas 17, 113501 (2010).
http://dx.doi.org/10.1063/1.3503625
19.
T. Sakaguchi, O. Sakai, and K. Tachibana, J. Appl. Phys. 101, 073305 (2007).
http://dx.doi.org/10.1063/1.2713940
20.
O. Sakai and K. Tachibana, Plasma Sources Sci. Technol. 21, 013001 (2012).
http://dx.doi.org/10.1088/0963-0252/21/1/013001
21.
S. M. Hamidi, Phys. Plasmas 19, 012503 (2012).
http://dx.doi.org/10.1063/1.3677263
22.
Mehdian, Z. Mohammadzahery and A. Hasanbeigi, Phys. Plasmas 21, 012101 (2014).
http://dx.doi.org/10.1063/1.4858897
23.
A. G. Ardakani, J. Opt. Soc. Am. B 31, 332 (2014).
http://dx.doi.org/10.1364/JOSAB.31.000332
24.
H. F. Zhang, S. B. Liu, and X. K. Kong, Prog. Electromagn. Res. 141, 267 (2013).
http://dx.doi.org/10.2528/PIER13051703
25.
I. H. Giden and H. Kurt, Applied Optics 51, 1287 (2012).
http://dx.doi.org/10.1364/AO.51.001287
26.
S. A. El-Naggar, European Physical Journal D 67, 1 (2013).
http://dx.doi.org/10.1140/epjd/e2013-30669-5
27.
H. F. Zhang, J. P. Zhen, and W. P. He, Optik. 124, 4182 (2013).
http://dx.doi.org/10.1016/j.ijleo.2012.12.047
28.
H. F. Zhang, S. B. Liu, and X. K. Kong, Physica B. 410, 244 (2013).
http://dx.doi.org/10.1016/j.physb.2012.10.025
29.
M. Segev, M. Soljačić, and J. M. Dudley, Nature Photonics 6, 209 (2012).
http://dx.doi.org/10.1038/nphoton.2012.71
30.
B. B. Mandelbrot, Enc. Phys. Sci. Tech. 5, 579 (1987).
31.
M. Maksimović and Z. Jakšić, Journal of Optics A: Pure & Applied Optics. 8, 355 (2006).
http://dx.doi.org/10.1088/1464-4258/8/3/021
32.
K. Dalrymple, R. S. Strichartz, and J. P. Vinson, Journal of Fourier Analysis & Applications 5, 203 (1999).
http://dx.doi.org/10.1007/BF01261610
33.
K. Sakoda, S. Kirihara, Y. Miyamoto, M. W. Takeda, and K. Honda, Applied Physics B 81, 321 (2005).
http://dx.doi.org/10.1007/s00340-005-1864-8
34.
S. R. Best, IEEE Transactions on Antennas & Propagation 51, 1292 (2003).
http://dx.doi.org/10.1109/TAP.2003.812257
35.
S. R. Best, IEEE Antennas & Wireless Propagation Letters 1, 22 (2002).
http://dx.doi.org/10.1109/LAWP.2002.802579
36.
M. Li, Y. Liu, and Z. Q. Zhang, Phys. Rev. B 61, 16193 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.16193
37.
C. M. G. Watterson, M. J. Padgett, and J. Courtial, Opt.Commun. 223, 17 (2003).
http://dx.doi.org/10.1016/S0030-4018(03)01620-1
38.
L. Zheng, J. J. Xu, and Z. F. Lin, Chinese Phys. Lett. 20, 516 (2003).
http://dx.doi.org/10.1088/0256-307X/20/4/322
39.
D. W. Cooley and D. R. Andersen, J. Opt. Soc. Am. B 24, A84 (2007).
http://dx.doi.org/10.1364/JOSAB.24.000A84
40.
V. Kuzmiak and A. A. Maradudin, Phys. Rev. B 55, 7427 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7427
41.
H. F. Zhang, G. W. Ding, H. M. Li, and S. B. Liu, Phys. Plasmas 22, 022105 (2015).
http://dx.doi.org/10.1063/1.4906886
42.
C. Jacoboni and L. Reggiani, Reviews of Modern Physics 55, 645 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.645
43.
V. Mizeikis, S. Juodkazis, A. Marcinkevičius, S. Matsuo, and H. Misawa, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2, 35 (2001).
http://dx.doi.org/10.1016/S1389-5567(01)00009-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961726
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961726
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961726
2016-08-23
2016-12-06

Abstract

In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961726.html;jsessionid=TJIlnqqremk_UpuE97wSEoxj.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961726&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961726&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961726'
Right1,Right2,Right3,