Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961728
1.
E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, 3rd ed. (CRC Press, Boca Raton, FL, 2008), p. 119, Chemical industries.
2.
P. Englezos and J. D. Lee, Korean Journal of Chemical Engineering 22, 671 (2005).
http://dx.doi.org/10.1007/BF02705781
3.
R. Santamaria, J. A. Mondragón-Sánchez, and X. Bokhimi, The Journal of Physical Chemistry A 116, 3673 (2012).
http://dx.doi.org/10.1021/jp2095467
4.
J. I. Lunine and D. J. Stevenson, Icarus 70, 61 (1987).
http://dx.doi.org/10.1016/0019-1035(87)90075-3
5.
S. K. Atreya, R. D. Lorenz, and J. H. Waite, Titan from Cassini-Huygens (Springer, 2009), p. 177.
6.
E. D. Sloan, Nature 426, 353 (2003).
http://dx.doi.org/10.1038/nature02135
7.
C. A. Koh, E. D. Sloan, A. K. Sum, and D. T. Wu, Annual review of chemical and biomolecular engineering 2, 237 (2011).
http://dx.doi.org/10.1146/annurev-chembioeng-061010-114152
8.
S. G. Hatzikiriakos and P. Englezos, Chemical Engineering Science 48, 3963 (1993).
http://dx.doi.org/10.1016/0009-2509(93)80375-Z
9.
Z. M. Jendi, P. Servio, and A. D. Rey, Crystal Growth & Design 15, 5301 (2015).
http://dx.doi.org/10.1021/acs.cgd.5b00829
10.
Z. Jendi, P. Servio, and A. Rey, Physical Chemistry Chemical Physics 18, 10320 (2016).
http://dx.doi.org/10.1039/C5CP06530E
11.
F. Izquierdo-Ruiz, A. Otero-de-la-Roza, J. Contreras-Garcia, J. M. Menédez, O. Pietro-Ballesteros, and J. M. Recio, High Pressure Research 35, 49 (2015).
http://dx.doi.org/10.1080/08957959.2014.996560
12.
W. F. Kuhs, B. Chazallon, P. G. Radaelli, and F. Pauer, Journal of inclusion phenomena and molecular recognition in chemistry 29, 65 (1997).
http://dx.doi.org/10.1023/A:1007960217691
13.
B. Chazallon and W. F. Kuhs, The Journal of chemical physics 117, 308 (2002).
http://dx.doi.org/10.1063/1.1480861
14.
D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. A. Ripmeester, J. S. Tse, J. R. Dahn, F. Lee, and L. D. Calvert, Molecular Crystals and Liquid Crystals 141, 141 (1986).
http://dx.doi.org/10.1080/00268948608080205
15.
F. L. Ning, K. Glavatskiy, Z. Ji, S. Kjelstrup, and T. H. Vlugt, Physical Chemistry Chemical Physics 17, 2869 (2015).
http://dx.doi.org/10.1039/C4CP04212C
16.
H. Huo, Y. Liu, Z. Zheng, J. Zhao, C. Jin, and T. Lv, Journal of Renewable and Sustainable Energy 3, 063110 (2011).
http://dx.doi.org/10.1063/1.3670410
17.
Z. M. Jendi, A. D. Rey, and P. Servio, Molecular Simulation 41, 572 (2015).
http://dx.doi.org/10.1080/08927022.2014.899698
18.
H. Shimizu, T. Kumazaki, T. Kume, and S. Sasaki, Physical Review B 65, 212102 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.212102
19.
C. R. Miranda and T. Matsuoka, in Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).
20.
K. C. Hester, Z. Huo, A. L. Ballard, C. A. Koh, K. T. Miller, and E. D. Sloan, The Journal of Physical Chemistry B 111, 8830 (2007).
http://dx.doi.org/10.1021/jp0715880
21.
S. Zele, S.-Y. Lee, and G. Holder, The Journal of Physical Chemistry B 103, 10250 (1999).
http://dx.doi.org/10.1021/jp9917704
22.
C. J. Rawn, A. J. Rondinone, B. C. Chakoumakos, S. Circone, L. A. Stern, S. H. Kirby, and Y. Ishii, Canadian Journal of Physics 431 (2003).
http://dx.doi.org/10.1139/p03-022
23.
M. B. Helgerud, W. F. Waite, S. H. Kirby, and A. Nur, Journal of Geophysical Research: Solid Earth 114, B02212 (2009).
24.
A. Y. Manakov, A. Y. Likhacheva, V. A. Potemkin, A. G. Ogienko, A. V. Kurnosov, and A. I. Ancharov, ChemPhysChem 12, 2476 (2011).
http://dx.doi.org/10.1002/cphc.201100126
25.
H. E. Niya, H. Modarress, and E. Zaminpayma, Journal of Cluster Science 22, 11 (2011).
http://dx.doi.org/10.1007/s10876-011-0358-6
26.
T. M. Narayanan, K. Imasato, S. Takeya, S. Alavi, and R. Ohmura, The Journal of Physical Chemistry C 119, 25738 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b08220
27.
A. L. Ballard, PhD Thesis, Colorado School of Mines, Golden, CO, 2002.
28.
A. P. Douce, Thermodynamics of the Earth and Planets (Cambridge University Press, 2011).
29.
F. Stacey, B. Brennan, and R. Irvine, Geophysical surveys 4, 189 (1981).
http://dx.doi.org/10.1007/BF01449185
30.
R. Chidambaram and S. M. Sharma, Current science 60, 397 (1991).
31.
P. Englezos, Industrial & Engineering Chemistry Research 32, 1251 (1993).
http://dx.doi.org/10.1021/ie00019a001
32.
P. Ordejón, D. Sanchez-Portal, E. Artacho, and J. M. Soler, “SIESTA: Spanish Initiative for Electronic Simulations with Thousands of Atoms,” URL: http://www.uam.es/siesta (2001).
33.
J. P. Perdew, K. Burke, and M. Ernzerhof, Physical review letters 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
Y. Zhang and W. Yang, Physical Review Letters 80, 890 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.890
35.
B. Hammer, L. B. Hansen, and J. K. Nørskov, Physical Review B 59, 7413 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7413
36.
B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chemical Physics Letters 157, 200 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87234-3
37.
C. Lee, W. Yang, and R. G. Parr, Physical review B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
38.
A. D. Becke, Physical review A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
39.
F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum, and K. Yasuoka, The Journal of chemical physics 138, 124504 (2013).
http://dx.doi.org/10.1063/1.4795499
40.
T. C. Mak and R. K. McMullan, The Journal of Chemical Physics 42, 2732 (1965).
http://dx.doi.org/10.1063/1.1703229
41.
D. Hamann, Physical review B 55, R10157 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10157
42.
M. J. Gillan, D. Alfè, and A. Michaelides, The Journal of Chemical Physics 144, 130901 (2016).
http://dx.doi.org/10.1063/1.4944633
43.
P. B. Roy and S. B. Roy, Journal of Physics: Condensed Matter 18, 10481 (2006).
http://dx.doi.org/10.1088/0953-8984/18/46/015
44.
J. H. Li, S. H. Liang, H. B. Guo, and B. X. Liu, Applied Physics Letters 87 (2005).
45.
M. Kumar, Physica B: Condensed Matter 212, 391 (1995).
http://dx.doi.org/10.1016/0921-4526(95)00361-C
46.
F. Birch, Journal of Geophysical Research 57, 227 (1952).
http://dx.doi.org/10.1029/JZ057i002p00227
47.
P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, Journal of Physics: Condensed Matter 1, 1941 (1989).
http://dx.doi.org/10.1088/0953-8984/1/11/002
48.
R. Jeanloz, Physical Review B 38, 805 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.805
49.
R. E. Cohen, O. Gülseren, and R. J. Hemley, American Mineralogist 85, 338 (2000).
http://dx.doi.org/10.2138/am-2000-2-312
50.
L. Vočadlo, J. Poirer, and G. Price, American Mineralogist 85, 390 (2000).
http://dx.doi.org/10.2138/am-2000-2-319
51.
H. Hirai, T. Tanaka, T. Kawamura, Y. Yamamoto, and T. Yagi, Journal of Physics and Chemistry of Solids 65, 1555 (2004).
http://dx.doi.org/10.1016/j.jpcs.2003.12.018
52.
A. Klapproth, E. Goreshnik, D. Staykova, H. Klein, and W. F. Kuhs, Canadian journal of physics 81, 503 (2003).
http://dx.doi.org/10.1139/p03-024
53.
C. A. Tulk, S. Machida, D. D. Klug, H. Lu, M. Guthrie, and J. J. Molaison, The Journal of chemical physics 141, 174503 (2014).
http://dx.doi.org/10.1063/1.4899265
54.
L. Yang, C. A. Tulk, D. D. Klug, B. C. Chakoumakos, L. Ehm, J. J. Molaison, J. B. Parise, and J. M. Simonson, Chemical Physics Letters 485, 104 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.12.024
55.
A. H. Nissan, Textile Research Journal 25, 780 (1955).
http://dx.doi.org/10.1177/004051755502500907
56.
A. H. Nissan, Macromolecules 10, 660 (1977).
http://dx.doi.org/10.1021/ma60057a032
57.
A. Mortensen, Concise encyclopedia of composite materials (Elsevier, 2006).
58.
R. H. Marchessault and C. Skaar, in Surfaces and Coatings Related to Paper and Wood: A Symposium [held At] State University College of Forestry at Syracuse University (Syracuse University Press, 1967).
59.
G. Grimvall, Thermophysical properties of materials (Elsevier, 1999).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961728
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961728
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961728
2016-08-23
2016-09-29

Abstract

This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961728.html;jsessionid=QJ7Ub1_XiwRRK1Dg9iEPsksf.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961728&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961728&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961728'
Right1,Right2,Right3,