Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961886
1.
S. Lorenz, A. Groß, and M. Scheffler, Chem. Phys. Lett. 395(4), 210-215 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.07.076
2.
T.B. Blank, S.D. Brown, A.W. Calhoun, and D.J. Doren, J. Chem. Phys. 103(10), 41294137 (1995).
http://dx.doi.org/10.1063/1.469597
3.
J. Behler and M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.146401
4.
H. Eshet et al., Phys. Rev. B 81(18), 184107 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.184107
5.
H. Eshet et al., Phys. Rev. Lett. 108(11), 115701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.115701
6.
J. Behler et al., Phys. Rev. Lett. 100(18), 185501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.185501
7.
T. Morawietz and J. Behler, J. Phys. Chem. A 117(32), 73567366 (2013).
http://dx.doi.org/10.1021/jp401225b
8.
K. J. Jose, N. Artrith, and J. Behler, J. Chem. Phys. 136(19), 194111 (2012).
http://dx.doi.org/10.1063/1.4712397
9.
N. Artrith, T. Morawietz, and J. Behler, Phys. Rev. B 83(15), 153101 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.153101
10.
A.P. Bartók et al., Phys. Rev. Lett. 104(13), 136403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.136403
11.
W.J. Szlachta, A.P. Bartók, and G. Csányi, Phys. Rev. B 90(10), 104108 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.104108
12.
A. P. Bartók, M. J. Gillan, F. R. Manby, and G. Csányi, Phys. Rev. B 88(5), 054104 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.054104
13.
A.P. Thompson et al., J. Comp. Phys. 285, 316-330 (2015).
http://dx.doi.org/10.1016/j.jcp.2014.12.018
14.
A.V. Shapeev, arXiv:1512.06054 (2015).
15.
G. Csányi, T. Albaret, M.C. Payne, and A. De Vita, Phys. Rev. Lett. 93(17), 175503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.175503
16.
Z. Li, J. R. Kermode, and A. De Vita, Phys. Rev. Lett. 114(9), 096405 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.096405
17.
V. Botu and R. Ramprasad, Int. J. Quantum Chem. 115(16), 1074-1083 (2015).
http://dx.doi.org/10.1002/qua.24836
18.
A. P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87(18), 184115 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184115
19.
L. Zhu et al., J. Chem. Phys. 144(3), 034203 (2016).
http://dx.doi.org/10.1063/1.4940026
20.
R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, J. Chem. Theory Comput. 11(5), 2087-2096 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00099
21.
F. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento, Int. J. Quantum Chem. 115(16), 1094-1101 (2015).
http://dx.doi.org/10.1002/qua.24917
22.
A.O. Lyakhov et al., Comput. Phys. Commun. 184(4), 1172-1182 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.12.009
23.
A.R. Oganov and C.W. Glass, J. Chem. Phys. 124(24), 244704 (2006).
http://dx.doi.org/10.1063/1.2210932
24.
C.W. Glass, A.R. Oganov, and N. Hansen, Comput. Phys. Commun. 175(11), 713-720 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.07.020
25.
A.R. Oganov et al., Nature 457(723), 863-867 (2009).
http://dx.doi.org/10.1038/nature07736
26.
Y. Ma et al., Nature 458(7235), 182-185 (2009).
http://dx.doi.org/10.1038/nature07786
27.
W. Zhang et al., Science 342(6165), 1502-1505 (2013).
http://dx.doi.org/10.1126/science.1244989
28.
J. Behler, Phys. Chem. Chem. Phys. 13(40), 17930-17955 (2011).
http://dx.doi.org/10.1039/c1cp21668f
29.
P. Ewald, Annalen der Physik 369(3), 253-287 (1921).
http://dx.doi.org/10.1002/andp.19213690304
30.
M.T. Dove, Introduction to Lattice Dynamics (Cambridge university press, 1993), Vol.4.
31.
J.D. Gale and A.L. Rohl, Mol. Sim. 29(5), 291-341 (2003).
http://dx.doi.org/10.1080/0892702031000104887
32.
J.D. Gale, J. Chem. Soc. Faraday Trans. 93(4), 629-637 (1997).
http://dx.doi.org/10.1039/a606455h
33.
A.R. Oganov, Modern methods of crystal structure prediction (John Wiley and Sons, 2011).
34.
M. Valle and A.R. Oganov, Acta Cryst. A66(3), 507-517 (2010).
http://dx.doi.org/10.1107/S0108767310026395
35.
A.R. Oganov and M. Valle, J. Chem. Phys. 130(10), 104504 (2009).
http://dx.doi.org/10.1063/1.3079326
36.
Y. LeCun, L. Bottou, G.B. Orr, and K. Muller, “Efficient backprop,” Neural networks: Tricks of the trade (Springer Berlin Heidelberg, 2012), pp. 9-48.
37.
G. Kresse and J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
38.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
J. Klimeš, D.R. Bowler, and A. Michaelides, Phys. Rev. B 83(19), 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
40.
G. Kresse and D. Joubert, Phys. Rev. B 59(3), 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
41.
A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105(41), 9396-9409 (2001).
http://dx.doi.org/10.1021/jp004368u
42.
J. A. Barker et al., J. Chem. Phys. 61(8), 3081-3089 (1974).
http://dx.doi.org/10.1063/1.1682464
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961886
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961886
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961886
2016-08-24
2016-12-08

Abstract

We present a new method for a fast, unbiased and accurate representation of interatomic interactions. It is a combination of an artificial neural network and our new approach for pair potential reconstruction. The potential reconstruction method is simple and computationally cheap and gives rich information about interactions in crystals. This method can be combined with structure prediction and molecular dynamics simulations, providing accuracy similar to ab initio methods, but at a small fraction of the cost. We present applications to real systems and discuss the insight provided by our method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961886.html;jsessionid=luYm9OuRz4m6d34Ly8VZvQOg.x-aip-live-03?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961886&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961886&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961886'
Right1,Right2,Right3,