Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961945
1.
K. Sampathkumar, T.V. Arjunan, P. Pitchandi, and P. Senthilkumar, Renew. Sustain. Energy Rev. 14, 1503 (2010).
http://dx.doi.org/10.1016/j.rser.2010.01.023
2.
M. Thirugnanasambandam, S. Iniyan, and R. Goic, Renew. Sustain. Energy Rev. 14, 312 (2010).
http://dx.doi.org/10.1016/j.rser.2009.07.014
3.
N.S. Lewis, Science (80-. ) 351, aad1920 (2016).
http://dx.doi.org/10.1126/science.aad1920
4.
H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, Nat. Commun. 5, 4449 (2014).
http://dx.doi.org/10.1038/ncomms5449
5.
L. Zhang, B. Tang, J. Wu, R. Li, and P. Wang, Adv. Mater. 27, 4889 (2015).
http://dx.doi.org/10.1002/adma.201502362
6.
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, and W.J. Padilla, Nat. Commun. 6, 10103 (2015).
http://dx.doi.org/10.1038/ncomms10103
7.
L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, Sci. Adv. 2, e1501227 (2016).
http://dx.doi.org/10.1126/sciadv.1501227
8.
S. Ishii, R.P. Sugavaneshwar, and T. Nagao, J. Phys. Chem. C 120, 2343 (2016).
http://dx.doi.org/10.1021/acs.jpcc.5b09604
9.
S. Ishii, R.P. Sugavaneshwar, K. Chen, T.D. Dao, and T. Nagao, Opt. Mater. Express 6, 640 (2016).
http://dx.doi.org/10.1364/OME.6.000640
10.
X. Wang, G. Ou, N. Wang, and H. Wu, ACS Appl. Mater. Interfaces 8, 9194 (2016).
http://dx.doi.org/10.1021/acsami.6b02071
11.
M.S. Zielinski, J.-W. Choi, T. La Grange, M. Modestino, S.M.H. Hashemi, Y. Pu, S. Birkhold, J.A. Hubbell, and D. Psaltis, Nano Lett. 16, 2159 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b03901
12.
O. Neumann, A.D. Neumann, E. Silva, C. Ayala-Orozco, S. Tian, P. Nordlander, and N.J. Halas, Nano Lett. 15, 7880 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02804
13.
S. Lee, R.A. Taylor, L. Dai, R. Prasher, and P.E. Phelan, Mater. Res. Express 2, 065004 (2015).
http://dx.doi.org/10.1088/2053-1591/2/6/065004
14.
S.J.S. Morris, J. Fluid Mech. 494, 297 (2003).
http://dx.doi.org/10.1017/S0022112003006153
15.
S. Yu, Y. Zhang, H. Duan, Y. Liu, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, Sci. Rep. 5, 13600 (2015).
http://dx.doi.org/10.1038/srep13600
16.
M. Potash and P. Wayner, Int. J. Heat Mass Transf. 15, 1851 (1972).
http://dx.doi.org/10.1016/0017-9310(72)90058-0
17.
J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic Press, San Diego, 2011).
18.
H. Wang, S. V. Garimella, and J.Y. Murthy, Int. J. Heat Mass Transf. 50, 3933 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.052
19.
H.K. Cammenga, Curr. Top. Mater. Sci. (North Holland Publishing Company, New York, NY, 1980), pp. 335446.
20.
T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt, Introduction to Heat Transfer (John Wiley Inc., Hoboken, NJ, 2011).
21.
W. Nakayama, T. Daikoku, H. Kuwahara, and T. Nakajima, J. Heat Transfer 102, 451 (1980).
http://dx.doi.org/10.1115/1.3244321
22.
H.K. Dhavaleswarapu, J.Y. Murthy, and S. V. Garimella, Int. J. Heat Mass Transf. 55, 915 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.017
23.
P.K. Kundu and I.M. Cohen, Fluid Mechanics, 4th ed. (Academic Press, San Diego, CA, 2008).
24.
A.G. Yiotis, A.G. Boudouvis, A.K. Stubos, I.N. Tsimpanogiannis, and Y.C. Yortsos, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 68, 037303 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.037303
25.
A.E. Bergles, J. Heat Transfer 110, 1082 (1988).
http://dx.doi.org/10.1115/1.3250612
26.
L. Burmeister, Convective Heat Transfer, 2nd ed. (John Wiley & Sons Inc., New York, NY, 1993).
27.
E. Bouleghlimat, P.R. Davies, R.J. Davies, R. Howarth, J. Kulhavy, and D.J. Morgan, Carbon N. Y. 61, 124 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.04.076
28.
S. Baral, A.J. Green, and H.H. Richardson, MRS Proc. 1779, 33 (2015).
http://dx.doi.org/10.1557/opl.2015.700
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961945
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961945
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961945
2016-08-25
2016-09-25

Abstract

The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (), with a lower being preferred. The proposed study is of much relevance to efficient solar energy utilization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961945.html;jsessionid=xXl6zqYPRXKubQiQbzZ80Joy.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961945&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961945&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961945'
Right1,Right2,Right3,