Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961948
1.
S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
http://dx.doi.org/10.1063/1.102730
2.
S. D. Sarma, J. Fabian, X. Hu, and I. Zutic, Solid State Commun. 119, 207 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00111-9
3.
Yu. A. Mamaev, L. G. Gerchikov, Yu. P. Yashin, D. A. Vasiliev, V. V. Kuzmichev, M. Ustinov, A. E. Zhukov, V. S. Mikhrin, and A. P. Vasiliev, Appl. Phys. Lett. 93, 81114 (2008).
http://dx.doi.org/10.1063/1.2976437
4.
X. Jin, B. Ozdol, M. Yamamoto, A. Mano, N. Yamamoto, and Y. Takeda, Appl. Phys. Lett. 105, 203509 (2014).
http://dx.doi.org/10.1063/1.4902337
5.
M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X. G. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Ohshima, T. Saka, T. Kato, and H. Horinaka, Appl. Phys. Express 3, 026601 (2010).
http://dx.doi.org/10.1143/APEX.3.026601
6.
M. Kuwahara, S. Kusunoki, X. G. Jin, T. Nakanishi, Y. Takeda, K. Saitoh, T. Ujihara, H. Asano, and N. Tanaka, Appl. Phys. Lett. 101, 033102 (2012).
http://dx.doi.org/10.1063/1.4737177
7.
L. Ji, S. Lu, Y. Wu, P. Dai, L. Bian, M. Arimochi, T. Watanabe, N. Asaka, M. Uemura, A. Tackeuchi, S. Uchida, and H. Yang, Sol. Energy Mater Sol Cells 127, 1 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.03.051
8.
R. Harasawa, N. Yamamoto, H. Wu, T. Aritake, S. Lu, L. Ji, and A. Tackeuchi, Phys. Status Solidi B 252, 1244 (2015).
http://dx.doi.org/10.1002/pssb.201400321
9.
S. Koumetz, K. Ketata, M. Ketata, and J. Marcon, J. Phys. D: Appl. Phys. 31, 3421 (1998).
http://dx.doi.org/10.1088/0022-3727/31/24/004
10.
H. Prinkey, D. A. Thompson, B. J. Robinson, P. Mascher, P. J. Simpson, U. Myler, J. U. Kang, and M. Y. Frankel, J. Vac. Sci. Technol. A. 16, 772 (1998).
http://dx.doi.org/10.1116/1.581057
11.
T. Kitatani, M. Kondow, and M. Kudo, Jpn. J. Appl. Phys. 40, 750 (2001).
http://dx.doi.org/10.1143/JJAP.40.L750
12.
G. Lampel, Phys. Rev. Lett. 20, 491 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.491
13.
A. Tackeuchi, S. Muto, T. Inata, and T. Fujii, Appl. Phys. Lett. 56, 2213 (1990).
http://dx.doi.org/10.1063/1.102970
14.
T. Uenoyama and L. J. Sham, Phys. Rev. Lett. 64, 3070 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.3070
15.
G. L. Bir, A. G. Aronov, and G. E. Pikus, Zh. Eksp. Teor. Fiz. 69, 1382 (1975)
[G. L. Bir, A. G. Aronov, and G. E. Pikus, Sov. Phys. JETP 42, 705 (1975)].
16.
G. Fishman and G. Lampel, Phys. Rev. B 16, 820 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.820
17.
R. J. Elliott, Phys. Rev. 96, 266 (1954).
http://dx.doi.org/10.1103/PhysRev.96.266
18.
Y. Yafet, Solid State Phys. 14, 1 (1963).
19.
M. I. D’yakonov and V. I. Perel, Sov. Phys. Solid State 13, 3023 (1972).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961948
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961948
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961948
2016-08-25
2016-12-06

Abstract

The effect of thermal annealing on the electron spin relaxation of beryllium-doped InGaAsP bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4) ns at 10 (300) K, which was more than two (four) times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961948.html;jsessionid=aOZuP1ytTmdytALA_28N5hDI.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961948&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961948&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961948'
Right1,Right2,Right3,