Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).
M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).
J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science 338, 1193 (2012).
Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. –H. Cho, L. Ma, X. Niu, S. Kim, Y. –W. Son, D. Feng, S. Li, S. -W. Cheong, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 10, 270 (2015).
S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. –H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, and H. Yang, Science 349, 625 (2015).
D. Ovchinnikov, A. Allain, Y. –S. Huang, D. Dumcenco, and A. Kis, ACS Nano 8, 8174 (2014).
C. –H. Lee, G. –H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Nat. Nanotechnol. 9, 676 (2014).
L. C. Upadhyayula, J. J. Loferski, A. Wold, W. Giriat, and R. Kershaw, J. Appl. Phys. 39, 4736 (1968).
V. Podzorov, M. E. Gershenson, Ch. Kloc, R. Zeis, and E. Bucher, Appl. Phys. Lett. 84, 3301 (2004).
J. Pu, Y. Yomogida, K. –K. Liu, L. –J. Li, Y. Iwasa, and T. Takenobu, Nano Lett. 12, 4013 (2012).
G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, Nano Lett. 4, 927 (2004).
S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater. 25, 1822 (2013).
D. Liang and X. P. A. Gao, Nano Lett. 12, 3263 (2012).
M. –W. Lin, L. Liu, Q. Lan, X. Tan, K. S. Dhindsa, P. Zeng, V. M. Naik, M. M. –C. Cheng, and Z. Zhou, J. of Phys. D: Appl. Phys. 45, 345102 (2012).
A. Allain and A. Kis, ACS Nano 8, 7180 (2014).
D. J. Carrad, A. M. Burke, R. W. Lyttleton, H. J. Joyce, H. H. Tan, C. Jagadish, K. Storm, H. Linke, L. Samuelson, and A. P. Micolich, Nano Lett. 14, 94 (2014).
J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukagoshi, S. Ikehata, and Y. Aoyagi, Appl. Phys. Lett. 88, 112102 (2006).
P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tane, and G. Eda, Nanoscale 5, 9677 (2013).
H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, Nano Lett. 15, 709 (2015).
B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare, and A. K. Sood, Phys. Rev. B 85, 161403(R) (2012).
D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, ACS Nano 6, 5635 (2012).
H. C. P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad, T. Taniguchi, K. Watanabe, E. Tutuc, and S. K. Banerjee, ACS Nano 9, 10402 (2015).
M. M. Perera, M. –W. Lin, H. –J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M. –C. Cheng, D. Tománek, and Z. Zhou, ACS Nano 7, 4449 (2013).
D. K. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805 (2010).
S. Xiao, P. Xiao, X. Zhang, D. Yan, X. Gu, F. Qin, Z. Ni, Z. J. Han, and K. Ostrikov, Sci. Rep. 6, 19945 (2016).
G. H. Han, N. J. Kybert, C. H. Naylor, B. S. Lee, J. Ping, J. H. Park, J. Kang, S. Y. Lee, Y. H. Lee, R. Agarwal, and A. T. C. Johnson, Nat. Commun. 6, 6128 (2015).
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).

Data & Media loading...


Article metrics loading...



We report the fabrication of a patterned polymer electrolyte for a two-dimensional (2D) semiconductor, few-layer tungsten diselenide (WSe) field-effect transistor (FET). We expose an electron-beam in a desirable region to form the patterned structure. The WSe FET acts as a -type semiconductor in both bare and polymer-covered devices. We observe a highly efficient gating effect in the polymer-patterned device with independent gate control. The patterned polymer gate operates successfully in a molybdenum disulfide (MoS) FET, indicating the potential for general applications to 2D semiconductors. The results of this study can contribute to large-scale integration and better flexibility in transition metal dichalcogenide (TMD)-based electronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd