Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961990
1.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
2.
W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).
http://dx.doi.org/10.1021/nl304777e
3.
M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).
http://dx.doi.org/10.1038/nature13763
4.
J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science 338, 1193 (2012).
http://dx.doi.org/10.1126/science.1228006
5.
Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. –H. Cho, L. Ma, X. Niu, S. Kim, Y. –W. Son, D. Feng, S. Li, S. -W. Cheong, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 10, 270 (2015).
http://dx.doi.org/10.1038/nnano.2014.323
6.
S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. –H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, and H. Yang, Science 349, 625 (2015).
http://dx.doi.org/10.1126/science.aab3175
7.
D. Ovchinnikov, A. Allain, Y. –S. Huang, D. Dumcenco, and A. Kis, ACS Nano 8, 8174 (2014).
http://dx.doi.org/10.1021/nn502362b
8.
C. –H. Lee, G. –H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Nat. Nanotechnol. 9, 676 (2014).
http://dx.doi.org/10.1038/nnano.2014.150
9.
L. C. Upadhyayula, J. J. Loferski, A. Wold, W. Giriat, and R. Kershaw, J. Appl. Phys. 39, 4736 (1968).
http://dx.doi.org/10.1063/1.1655829
10.
V. Podzorov, M. E. Gershenson, Ch. Kloc, R. Zeis, and E. Bucher, Appl. Phys. Lett. 84, 3301 (2004).
http://dx.doi.org/10.1063/1.1723695
11.
J. Pu, Y. Yomogida, K. –K. Liu, L. –J. Li, Y. Iwasa, and T. Takenobu, Nano Lett. 12, 4013 (2012).
http://dx.doi.org/10.1021/nl301335q
12.
G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, Nano Lett. 4, 927 (2004).
http://dx.doi.org/10.1021/nl049612y
13.
S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater. 25, 1822 (2013).
http://dx.doi.org/10.1002/adma.201202790
14.
D. Liang and X. P. A. Gao, Nano Lett. 12, 3263 (2012).
http://dx.doi.org/10.1021/nl301325h
15.
M. –W. Lin, L. Liu, Q. Lan, X. Tan, K. S. Dhindsa, P. Zeng, V. M. Naik, M. M. –C. Cheng, and Z. Zhou, J. of Phys. D: Appl. Phys. 45, 345102 (2012).
http://dx.doi.org/10.1088/0022-3727/45/34/345102
16.
A. Allain and A. Kis, ACS Nano 8, 7180 (2014).
http://dx.doi.org/10.1021/nn5021538
17.
D. J. Carrad, A. M. Burke, R. W. Lyttleton, H. J. Joyce, H. H. Tan, C. Jagadish, K. Storm, H. Linke, L. Samuelson, and A. P. Micolich, Nano Lett. 14, 94 (2014).
http://dx.doi.org/10.1021/nl403299u
18.
J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukagoshi, S. Ikehata, and Y. Aoyagi, Appl. Phys. Lett. 88, 112102 (2006).
http://dx.doi.org/10.1063/1.2186513
19.
P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
http://dx.doi.org/10.1063/1.2768624
20.
H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
http://dx.doi.org/10.1021/nl301702r
21.
W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tane, and G. Eda, Nanoscale 5, 9677 (2013).
http://dx.doi.org/10.1039/c3nr03052k
22.
H. Zhou, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, X. Huang, Y. Liu, N. O. Weiss, Z. Lin, Y. Huang, and X. Duan, Nano Lett. 15, 709 (2015).
http://dx.doi.org/10.1021/nl504256y
23.
B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare, and A. K. Sood, Phys. Rev. B 85, 161403(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.161403
24.
D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, ACS Nano 6, 5635 (2012).
http://dx.doi.org/10.1021/nn301572c
25.
H. C. P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad, T. Taniguchi, K. Watanabe, E. Tutuc, and S. K. Banerjee, ACS Nano 9, 10402 (2015).
http://dx.doi.org/10.1021/acsnano.5b04611
26.
M. M. Perera, M. –W. Lin, H. –J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M. –C. Cheng, D. Tománek, and Z. Zhou, ACS Nano 7, 4449 (2013).
http://dx.doi.org/10.1021/nn401053g
27.
D. K. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.256805
28.
S. Xiao, P. Xiao, X. Zhang, D. Yan, X. Gu, F. Qin, Z. Ni, Z. J. Han, and K. Ostrikov, Sci. Rep. 6, 19945 (2016).
http://dx.doi.org/10.1038/srep19945
29.
G. H. Han, N. J. Kybert, C. H. Naylor, B. S. Lee, J. Ping, J. H. Park, J. Kang, S. Y. Lee, Y. H. Lee, R. Agarwal, and A. T. C. Johnson, Nat. Commun. 6, 6128 (2015).
http://dx.doi.org/10.1038/ncomms7128
30.
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961990
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961990
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961990
2016-08-26
2016-09-26

Abstract

We report the fabrication of a patterned polymer electrolyte for a two-dimensional (2D) semiconductor, few-layer tungsten diselenide (WSe) field-effect transistor (FET). We expose an electron-beam in a desirable region to form the patterned structure. The WSe FET acts as a -type semiconductor in both bare and polymer-covered devices. We observe a highly efficient gating effect in the polymer-patterned device with independent gate control. The patterned polymer gate operates successfully in a molybdenum disulfide (MoS) FET, indicating the potential for general applications to 2D semiconductors. The results of this study can contribute to large-scale integration and better flexibility in transition metal dichalcogenide (TMD)-based electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961990.html;jsessionid=TUBPrZnlypXXdDEzsifUgNyX.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961990&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961990&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961990'
Right1,Right2,Right3,