Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961991
1.
G.B. Field, Astrophys. J. 142, 531 (1965).
http://dx.doi.org/10.1086/148317
2.
J.H. Hunter, Mon. Not. R. Astron. Soc. 133, 239 (1966).
http://dx.doi.org/10.1093/mnras/133.2.239
3.
P.K. Raju, Mon. Not. R. Astron. Soc. 139, 479 (1968).
http://dx.doi.org/10.1093/mnras/139.4.479
4.
M. Aggarwal and S.P. Talwar, Mon. Not. R. Astro. Soc. 146, 235 (1969).
http://dx.doi.org/10.1093/mnras/146.3.235
5.
G.V. Hoven and Y. Mok, Astrophys. J. 282, 267 (1984).
http://dx.doi.org/10.1086/162199
6.
M.H. Ibanez S., Astrophys. J. 290, 33 (1985).
http://dx.doi.org/10.1086/162957
7.
G. Bodo, A. Ferrari, S. Massaglia, V. Rosner, and G.S. Vaiana, Astrophys. J. 291, 798 (1985).
http://dx.doi.org/10.1086/163115
8.
M.P. Bora and S.P. Talwar, Phys. Fluids B 5(3), 950 (1993).
http://dx.doi.org/10.1063/1.860944
9.
A. Burkert and D.N.C. Lin, Astrophys. J. 537, 270 (2000).
http://dx.doi.org/10.1086/308989
10.
M. Najad-Asghar and J. Ghanbari, Astrophys. Space Sci. 302, 243 (2006).
http://dx.doi.org/10.1007/s10509-006-9049-4
11.
M. Shadmehri and J. Ghanbari, Astrophys. Space Sci. 278, 347 (2001).
http://dx.doi.org/10.1023/A:1013177820161
12.
T. Fukue and H. Kamaya, Astrophys. J. 669, 363 (2007).
http://dx.doi.org/10.1086/521268
13.
M.B. Baruah, S. Chatterjee, and M.P. Bora, J. Physics Conf. Series 208, 012073 (2010).
http://dx.doi.org/10.1088/1742-6596/208/1/012073
14.
R.P. Prajapati, R.K. Pensia, S. Kaothekar, and R.K. Chhajlani, Astrophys. Space Sci. 327, 139 (2010).
http://dx.doi.org/10.1007/s10509-010-0273-6
15.
S. Kaothekar and R.K. Chhajlani, J. phys. Con. Series 365, 1 (2012).
16.
S. Kaothekar and R.K. Chhajlani, ISRN Astron. and Astrophys. 2012, 1 (2012).
http://dx.doi.org/10.5402/2012/420938
17.
S. Kaothekar, G.D. Soni, R.P. Prajapati, and R.K. Chhajlani, Astrophys. Space Sci. 361, 204 (2016).
http://dx.doi.org/10.1007/s10509-016-2796-y
18.
R.J. Tayler, J. Nucl. Energy, Part C Plasma Phys. 5, 345 (1963).
http://dx.doi.org/10.1088/0368-3281/5/6/304
19.
G.L. Kalra and S.P. Talwar, Annales d’Astrophysique 27, 102 (1964).
20.
F. Pegoraro, B.N. Kuvshinov, J. Rem, and T.J. Schep, Adv. Space Res. 9, 1823 (1997).
http://dx.doi.org/10.1016/S0273-1177(97)00083-5
21.
P. Chatterjee and B. Das, Phys. Plasmas 11, 3616 (2004).
http://dx.doi.org/10.1063/1.1743341
22.
N. Shukla, P. Varma, and M.S. Tiwari, Ind. J. Pure and Applied Phys. 47, 305 (2009).
23.
R.K. Chhajlani and A.K. Parihar, Contrib. Plasma Phys. 33, 227 (1993).
http://dx.doi.org/10.1002/ctpp.2150330308
24.
S. Shaikh, A. Khan, and P.K. Bhatia, Phys. Lett. A 372, 1451 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.09.069
25.
P.A. Damiano, A.N. Wright, and J.F. Mckenzie, Phys. Plasmas 16, 062901 (2009).
http://dx.doi.org/10.1063/1.3142479
26.
C. Uberoi, J. Plasma Fusion Res. Series 8, 823 (2009).
27.
A.K. Patidar, R.K. Pensia, and V. Shrivastava, Can. J. Phys. 90, 1209 (2012).
http://dx.doi.org/10.1139/p2012-098
28.
D. L. Sutar, R.K. Pensia, and G. S. Kachhawa, J. Pure Appl. and Ind. Phys. 3, 265 (2013).
29.
K.V. Roberts and J.B. Taylor, Phys. Rev. Lett. 8, 197 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.197
30.
M.N. Rosenbluth, N. Krall, and N. Rostoker, Nucl. Fusion Suppl. 1, 143 (1962).
31.
R.C. Sharma, Astrophys. Space Sci. 29, L1 (1974).
http://dx.doi.org/10.1007/BF00642728
32.
F. Herrnegger, J. Plasma Phys. 8, 393 (1972).
http://dx.doi.org/10.1017/S0022377800007248
33.
P.D. Ariel, Astrophys. Space Sci. 141, 141 (1988).
http://dx.doi.org/10.1007/BF00641920
34.
P.K. Bhatia and R.P.S. Chhonkar, Astrophys. Space Sci. 115, 327 (1985).
http://dx.doi.org/10.1007/BF00653810
35.
D.S. Vaghela and R.K. Chhajlani, Contrib. Plasma Phys. 29, 77 (1989).
http://dx.doi.org/10.1002/ctpp.2150290111
36.
M.K. Vyas and R.K. Chhajlani, Contrib. Plasma Phys. 30, 315 (1990).
http://dx.doi.org/10.1002/ctpp.2150300214
37.
A. Marcu and I. Ballai, Proceedings of the Romanian Academy, Series A 8, 1 (2007).
38.
N.M. Ferraro, Astrophys. J. 662, 512 (2007).
http://dx.doi.org/10.1086/517877
39.
S. Kaothekar and R.K. Chhajlani, J. Phys. Con. Series. 534, 1 (2014).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961991
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961991
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961991
2016-08-26
2016-12-04

Abstract

I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961991.html;jsessionid=YtXbjzF4qyoMfq30rHvGPIG_.x-aip-live-02?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961991&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961991&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961991'
Right1,Right2,Right3,