Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4961992
1.
K. Lozovoy, A. Voytsekhovskiy, A. Kokhanenko, V. Satdarov, O. Pchelyakov, and A. Nikiforov, Opto-Electronics. Rev. 22, 171 (2014).
http://dx.doi.org/10.2478/s11772-014-0189-8
2.
M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, Appl. Phys. Lett. 80, 509 (2002).
http://dx.doi.org/10.1063/1.1435063
3.
K. L. Wang, D. Cha, J. Liu, and C. Chen, P. IEEE 95, 1866 (2007).
http://dx.doi.org/10.1109/JPROC.2007.900971
4.
L. M. Sanders, R. Stumpf, T. Mattsson, and B. S. Swartzentruber, Phys. Rev. Lett. 91, 206104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.206104
5.
L. Huang, F. Liu, and X. Gong, Phys. Rev. B 70, 155320 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.155320
6.
M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, Phys. Rev. B 88, 115311 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.115311
7.
Z. Zhong, P. Chen, Z. Jiang, and G. Bauer, Appl. Phys. Lett. 93, 043106 (2008).
http://dx.doi.org/10.1063/1.2965484
8.
Y. Ma, Z. Zhong, Q. Lv, W. Qiu, X. Wang, T. Zhou, Y. Fan, and Z. Jiang, Opt. Express 21, 6053 (2013).
http://dx.doi.org/10.1364/OE.21.006053
9.
D. Srivastava and B. J. Garrison, Phys. Rev. B 46, 1472 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.1472
10.
V. Milman, D. E. Jesson, S. J. Pennycook, M. C. Payne, M. H. Lee, and I. Stich, Phys. Rev. B 50, 2663 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.2663
11.
Z.-Y. Lu, C.-Z. Wang, and K.-M. Ho, Phys. Rev. B 62, 8104 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8104
12.
E. Bussmann and B. Swartzentruber, Phys. Rev. Lett. 104, 126101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126101
13.
A. E. Dolbak and B. Z. Olshanetsky, Cent. Eur. J. Phys. 4, 310 (2006).
14.
H. J. Kim, Z. M. Zhao, J. Liu, V. Ozolins, J. Y. Chang, and Y. H. Xie, J. Appl. Phys. 95, 6065 (2004).
http://dx.doi.org/10.1063/1.1711175
15.
B. Yang, F. Liu, and M. G. Lagally, Phys. Rev. Lett. 92, 025502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.025502
16.
H.-M. Chen, C.-H. Kuan, Y.-W. Suen, G.-L. Luo, Y.-P. Lai, F.-M. Wang, and S.-T. Chen, Nanotechnology 23, 015303 (2011).
http://dx.doi.org/10.1088/0957-4484/23/1/015303
17.
Y. J. Ma, C. Zeng, T. Zhou, S. F. Huang, Y. L. Fan, Z. Z. Zhong, X. J. Yang, J. S. Xia, and Z. M. Jiang, J. Phys. D: Appl. Phys. 47, 485303 (2014).
http://dx.doi.org/10.1088/0022-3727/47/48/485303
18.
Y. J. Ma, Z. Y. Zhong, X. J. Yang, Y. L. Fan, and Z. M. Jiang, Nanotechnology 24, 15304 (2013).
http://dx.doi.org/10.1088/0957-4484/24/1/015304
19.
G. Katsaros, J. Tersoff, M. Stoffel, A. Rastelli, P. Acosta-Diaz, G. S. Kar, G. Costantini, O. G. Schmidt, and K. Kern, Phys. Rev. Lett. 101, 096103 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.096103
20.
H. Hu, H. J. Gao, and F. Liu, Phys. Rev. Lett. 101, 216102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.216102
21.
T. R. Duncan and D. Kuhlmann-Wilsdorf, Phys. Status Solidi B 18, 231 (1966).
http://dx.doi.org/10.1002/pssb.19660180124
22.
I. Takahashi, N. Usami, K. Kutsukake, K. Morishita, and K. Nakajima, Jpn. J. Appl. Phys. 49, 04DP01 (2010).
23.
G. M. Vanacore, Politecnico di Milano ; Ecole Polytechnique X (2011).
24.
J. Neave, P. Dobson, B. Joyce, and J. Zhang, Appl. Phys. Lett. 47, 100 (1985).
http://dx.doi.org/10.1063/1.96281
25.
T. Schwarz-Selinger, Y. Foo, D. G. Cahill, and J. Greene, Phys. Rev. B 65, 125317 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.125317
26.
Z. Zhong, A. Halilovic, M. Muhlberger, F. Schaffler, and G. Bauer, J. Appl. Phys. 93, 6258 (2003).
http://dx.doi.org/10.1063/1.1566455
27.
Z.-Y. Lu, C. Wang, and K. Ho, Surf. Sci. 506, L282 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01496-6
28.
T. Schwarz-Selinger, Y. L. Foo, D. G. Cahill, and J. E. Greene, Phys. Rev. B 65, 125317 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.125317
29.
B. P. Uberuaga, M. Leskovar, A. P. Smith, H. Jónsson, and M. Olmstead, Phys. Rev. Lett. 84, 2441 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2441
30.
X. R. Qin, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 85, 3660 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3660
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4961992
Loading
/content/aip/journal/adva/6/8/10.1063/1.4961992
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4961992
2016-08-26
2016-12-08

Abstract

We report on a simple and intuitionistic experimental method to quantitatively measure surface diffusion lengths of Ge adatoms on Si(001) substrates and its activation energy , which is achieved by growing Ge quantum dots (QDs) on top surfaces of Si pillars with different radii and taking an advantage of preferential nucleation and growth of Ge QDs at the top surface edge of the pillars. Diffusion length of Ge adatom can directly be measured and determined by the radius of the pillar below which no QDs will nucleate and grow at the central region of the top surface of the Si pillar. With a growth rate fixed at 0.1 Å/s, by changing the growth temperature, the diffusion lengths at different temperatures would be obtained. Arrhenius plot of diffusion length as a function of growth temperature gives the value of of 1.37 eV. Likewise, with a growth rate fixed at 0.05 Å/s, the value is obtained to be 1.38 eV. Two values agree well with each other, implying that the method is reliable and self-consistent. Moreover, for a fixed growth temperature, the surface diffusion lengths are found to be directly proportional to . It also agrees well with the theoretical prediction, further demonstrating the reliability of the method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4961992.html;jsessionid=_M34fzA8bp5UtrxuqfefFSmd.x-aip-live-06?itemId=/content/aip/journal/adva/6/8/10.1063/1.4961992&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4961992&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4961992'
Right1,Right2,Right3,