Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/8/10.1063/1.4962346
1.
G. B. Liu, W. Y. Shan, Y. Yao, W. Yao, and D. Xiao, Phys. Rev. B 88, 085433 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085433
2.
R. Fivaz and E. Mooser, Phys. Rev. 163, 743 (1967).
http://dx.doi.org/10.1103/PhysRev.163.743
3.
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
4.
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. –Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
5.
A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245213
6.
J. Chang, L. F. Register, and S. K. Banerjee, J. Appl. Phys. 115, 084506 (2014).
http://dx.doi.org/10.1063/1.4866872
7.
A. Sengupta and S. Mahapatra, J. Appl. Phys. 114, 194513 (2013).
http://dx.doi.org/10.1063/1.4833554
8.
H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
http://dx.doi.org/10.1021/nl301702r
9.
X. Tong, E. Ashalley, F. Lin, H. Li, and Z. M. Wang, Nano-Micro lett. 7, 203 (2015).
http://dx.doi.org/10.1007/s40820-015-0034-8
10.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
11.
B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
http://dx.doi.org/10.1021/nn203715c
12.
R. L. Chu, G. B. Liu, W. Yao, X. Xu, D. Xiao, and C. Zhang, Phys. Rev. B 89, 155317 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155317
13.
H. Rostami, A. G. Moghaddam, and R. Asgari, Phys. Rev. B 88, 085440 (2014).
http://dx.doi.org/10.1103/PhysRevB.88.085440
14.
G. B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, Chem. Soc. Rev. 44, 2643 (2015).
http://dx.doi.org/10.1039/C4CS00301B
15.
C. N. Chen, W. L. Su, M. E. Lee, J. Y. Jen, and Yiming Li, Jpn. J. Appl. Phys. 50, 060201 (2011).
http://dx.doi.org/10.7567/JJAP.50.060201
16.
C. N. Chen, S. H. Chang, W. L. Su, J. Y. Jen, and Yiming Li, Math. Comput. Model. 58, 282 (2013).
http://dx.doi.org/10.1016/j.mcm.2012.11.010
17.
S. Datta, Superlattices Microstruct. 28, 253 (2000).
http://dx.doi.org/10.1006/spmi.2000.0920
18.
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
19.
R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, and D. Jovanovic, J. Appl. Phys. 92, 3730 (2002).
http://dx.doi.org/10.1063/1.1503165
20.
R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 75, 081301 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.081301
21.
A. Yazdanpanah, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, IEEE Trans. Electron Devices 59, 433 (2012).
http://dx.doi.org/10.1109/TED.2011.2173690
22.
D. H. Lee and J. D. Joannopoulos, Phys. Rev. B 23, 4988 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.4988
23.
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C 4, 916 (1971).
http://dx.doi.org/10.1088/0022-3719/4/8/018
24.
J. A. Stovneng and P. Lipavsky, Phys. Rev. B 49, 16494 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16494
25.
A. Umerski, Phys. Rev. B 55, 5266 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.5266
26.
M. Ogawa, T. Sugano, and T. Miyoshi, Solid State Electron. 44, 1939 (2000).
http://dx.doi.org/10.1016/S0038-1101(00)00174-X
27.
D. Z. –Y Ting, Microelectron. J. 30, 985 (1999).
http://dx.doi.org/10.1016/S0026-2692(99)00065-8
28.
Timothy B. Boykin, Phys. Rev. B 54, 8107 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.8107
29.
A. Orlof, J. Ruseckas, and I. V. Zozoulenko, Phys. Rev. B 88, 125409 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.125409
30.
S. K. Chin, K. T. Lam, D. Seah, and G. Liang, Nanoscale Res. Lett. 7, 114 (2012).
http://dx.doi.org/10.1186/1556-276X-7-114
31.
Y. Wu and P. A. Childs, Nanoscale Res. Lett. 6, 62 (2011).
32.
X. W. Zhang and G. W. Yang, J. Phys. Chem. C 113, 4662 (2009).
http://dx.doi.org/10.1021/jp810483r
33.
B. Novakovic, R. Akis, and I. Knezevic, Phys. Rev. B 84, 195419 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195419
34.
H. B. Ribeiro, K. Sato, G. S. N. Eliel, E. A. T. de Souza, C. C. Lu, P. W. Chiu, R. Saito, and M. A. Pimenta, Carbon 90, 138 (2015).
http://dx.doi.org/10.1016/j.carbon.2015.04.005
35.
Y. Yang, G. Fedorov, S. E. Shafranjuk, T. M. Klapwijk, B. K. Cooper, R. M. Lewis, C. J. Lobb, and P. Barbara, Nano Lett. 15, 7859 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02564
36.
X. Lin and J. Ni, J. Appl. Phys. 117, 164305 (2015).
http://dx.doi.org/10.1063/1.4919223
37.
J. González, Phys. Rev. B 88, 125434 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.125434
38.
M. Ogawa, T. Sugano, and T. Miyoshi, Physica E 7, 840 (2000).
http://dx.doi.org/10.1016/S1386-9477(00)00073-4
39.
J. N. Schulman and Y. C. Chang, Phys. Rev. B 27, 2346 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.2346
40.
D. Z. –Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. B 45, 3583 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.3583
41.
J. C. Chiang and Y. C. Chang, J. Appl. Phys. 73, 2402 (1993).
http://dx.doi.org/10.1063/1.353094
42.
S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005).
43.
V. Hung Nguyen, V. Nam Do, A. Bournel, V. Lien Nguyen, and P. Dollfus, J. Appl. Phys. 106, 053710 (2009).
http://dx.doi.org/10.1063/1.3212984
44.
Y. T. Zhang, Q. F. Sun, and X. C. Xie, J. Appl. Phys. 109, 123718 (2011).
http://dx.doi.org/10.1063/1.3599930
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/8/10.1063/1.4962346
Loading
/content/aip/journal/adva/6/8/10.1063/1.4962346
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/8/10.1063/1.4962346
2016-08-31
2016-09-26

Abstract

Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/8/1.4962346.html;jsessionid=ZLujlWlD4VJpgMvtmEMxmbnG.x-aip-live-03?itemId=/content/aip/journal/adva/6/8/10.1063/1.4962346&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/8/10.1063/1.4962346&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/8/10.1063/1.4962346'
Right1,Right2,Right3,