Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962527
1.
M. Rontani et al., Phys. Rev. B 69, 085327 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085327
2.
D. Jacob, B. Wunsch, and D. Pfannkuche, Phys. Rev. B 70, 081314 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.081314
3.
T. Hayashi, H. D. C. T. Fujisawa, and Y. Hirayam, Phys. Rev. Lett. 91, 226804 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.226804
4.
D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.120
5.
D. DiVincenzo and D. Loss, Superlattices and Microstructures 23, 419 (1998).
http://dx.doi.org/10.1006/spmi.1997.0520
6.
R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).
http://dx.doi.org/10.1103/PhysRevA.62.012306
7.
V. N. Golovach and D. Loss, Semiconductor Science and Technology 17, 355 (2002).
http://dx.doi.org/10.1088/0268-1242/17/4/308
8.
R. Aguado and T. Brandes, Phys. Rev. Lett. 92, 206601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.206601
9.
T. Gilad and S. A. Gurvitz, Phys. Rev. Lett. 97, 116806 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.116806
10.
H. Jiao, X.-Q. Li, and J. Y. Luo, Phys. Rev. B 75, 155333 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155333
11.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000).
12.
F. Marquardt and C. Bruder, Phys. Rev. B 68, 195305 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.195305
13.
M. Braun, J. König, and J. Martinek, Phys. Rev. B 74, 075328 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.075328
14.
B. Wunsch, M. Braun, J. König, and D. Pfannkuche, Phys. Rev. B 72, 205319 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205319
15.
B. Sothmann and J. König, Phys. Rev. B 82, 245319 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245319
16.
J. Y. Luo, H. J. Jiao, F. Li, X.-Q. Li, and Y. J. Yan, J. Phys.: Cond. Matt. 21, 385801 (2009).
http://dx.doi.org/10.1088/0953-8984/21/38/385801
17.
J. Luo et al., Journal of Physics: Condensed Matter 23, 145301 (2011).
http://dx.doi.org/10.1088/0953-8984/23/14/145301
18.
Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
19.
Quantum Noise in Mesoscopic Physics, edited by Y. V. Nazarov (Kluwer, Dordrecht, 2003).
20.
A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1155
21.
O. Entin-Wohlman, Y. Imry, S. A. Gurvitz, and A. Aharony, Phys. Rev. B 75, 193308 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.193308
22.
X. Q. Li, P. Cui, and Y. J. Yan, Phys. Rev. Lett. 94, 066803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.066803
23.
S. D. Barrett and T. M. Stace, Phys. Rev. Lett. 96, 017405 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.017405
24.
J. Gabelli and B. Reulet, Phys. Rev. Lett. 100, 026601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.026601
25.
J. Wabnig, B. W. Lovett, J. H. Jefferson, and G. A. D. Briggs, Phys. Rev. Lett. 102, 016802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.016802
26.
H.-A. Engel and D. Loss, Phys. Rev. Lett. 93, 136602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.136602
27.
J. S. Jin, X. Q. Li, M. Luo, and Y. J. Yan, J. Appl. Phys. 109, 053704 (2011).
http://dx.doi.org/10.1063/1.3555586
28.
E. A. Rothstein, O. Entin-Wohlman, and A. Aharony, Phys. Rev. B 79, 075307 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075307
29.
D. Marcos, C. Emary, T. Brandes, and R. Aguado, Phys. Rev. B 83, 125426 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125426
30.
P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, Phys. Rev. B 89, 115411 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.115411
31.
J. S. Jin, S. Wang, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 234108 (2015).
http://dx.doi.org/10.1063/1.4922712
32.
J. S. Jin, M. Marthaler, P.-Q. Jin, D. Golubev, and G. Schön, New J. Phys. 15, 025044 (2013).
http://dx.doi.org/10.1088/1367-2630/15/2/025044
33.
A. K. Hüttel, S. Ludwig, H. Lorenz, K. Eberl, and J. P. Kotthaus, Phys. Rev. B 72, 081310(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.081310
34.
P. Barthold, F. Hohls, N. Maire, K. Pierz, and R. J. Haug, Phys. Rev. Lett. 96, 246804 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.246804
35.
N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Nat Commun.
36.
J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703 (2008).
http://dx.doi.org/10.1063/1.2938087
37.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th ed. (World Scientific, Singapore, 2009).
38.
U. Weiss, Quantum Dissipative Systems, 3rd ed. Series in Modern Condensed Matter Physics Vol. 13 (World Scientific, Singapore, 2008).
39.
J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 74, 085324 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.085324
40.
M. W. Y. Tu and W.-M. Zhang, Phys. Rev. B 78, 235311 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235311
41.
J. S. Jin, J. Li, Y. Liu, X.-Q. Li, and Y. J. Yan, J. Chem. Phys. 140, 244111 (2014).
http://dx.doi.org/10.1063/1.4884390
42.
R. X. Xu and Y. J. Yan, J. Chem. Phys. 116, 9196 (2002).
http://dx.doi.org/10.1063/1.1474579
43.
D. K. C. MacDonald, Noise and Fluctuations: An Introduction (Wiley, New York, 1962), Ch. 2.2.1.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962527
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962527
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962527
2016-09-20
2016-12-03

Abstract

Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962527.html;jsessionid=0Y6i9F9shL4ACMLMWWPJUXVb.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962527&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962527&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962527'
Right1,Right2,Right3,