Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962545
1.
K. Kawahara, J. Suda, and T. Kimoto, J. Appl. Phys. 113, 033705 (2013).
http://dx.doi.org/10.1063/1.4776240
2.
F.C. Beyer, C.G. Hemmingsson, S. Leone, Y.C. Lin, a. Gällström, a. Henry, and E. Janzén, J. Appl. Phys. 110, 123701 (2011).
http://dx.doi.org/10.1063/1.3669401
3.
K. Kawahara, G. Alfieri, and T. Kimoto, J. Appl. Phys. 106, 013719 (2009).
http://dx.doi.org/10.1063/1.3159901
4.
K. Kawahara, M. Krieger, J. Suda, and T. Kimoto, J. Appl. Phys. 108, 023706 (2010).
http://dx.doi.org/10.1063/1.3460636
5.
K. Kawahara, J. Suda, G. Pensl, and T. Kimoto, J. Appl. Phys. 108, 033706 (2010).
http://dx.doi.org/10.1063/1.3456159
6.
T. Miyazawa and H. Tsuchida, J. Appl. Phys. 113, 083714 (2013).
http://dx.doi.org/10.1063/1.4793504
7.
L. Lilja, I.D. Booker, J.U. Hassan, E. Janzen, and J.P. Bergman, J. Cryst. Growth 381, 43 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.06.037
8.
K. Danno, D. Nakamura, and T. Kimoto, Appl. Phys. Lett. 90, 202109 (2007).
http://dx.doi.org/10.1063/1.2740580
9.
L. Storasta and H. Tsuchida, Appl. Phys. Lett. 90, 062116 (2007).
http://dx.doi.org/10.1063/1.2472530
10.
P.B. Klein, J. Appl. Phys. 103, 033702 (2008).
http://dx.doi.org/10.1063/1.2837105
11.
R.C. Barklie, M. Collins, B. Holm, Y. Pacaud, and W. Skorupa, J. Electron. Mater. 26, 137 (n.d.).
http://dx.doi.org/10.1007/s11664-997-0140-6
12.
J. Isoya, T. Umeda, N. Mizuochi, N.T. Son, E. Janzén, and T. Ohshima, Phys. Status Solidi Basic Res. 245, 1298 (2008).
http://dx.doi.org/10.1002/pssb.200844209
13.
N.T. Son, P. Carlsson, J. Ul Hassan, E. Janzén, T. Umeda, J. Isoya, a. Gali, M. Bockstedte, N. Morishita, T. Ohshima, and H. Itoh, Phys. Rev. Lett. 96, 055501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.055501
14.
M.E. Zvanut and V. V. Konovalov, Appl. Phys. Lett. 80, 410 (2002).
http://dx.doi.org/10.1063/1.1432444
15.
A. Kawasuso, F. Redmann, R. Krause-Rehberg, T. Frank, M. Weidner, G. Pensl, P. Sperr, and H. Itoh, J. Appl. Phys. 90, 3377 (2001).
http://dx.doi.org/10.1063/1.1402144
16.
A. Kawasuso, F. Redmann, R. Krause-Rehberg, M. Weidner, T. Frank, G. Pensl, P. Sperr, W. Triftshäuser, and H. Itoh, Appl. Phys. Lett. 79, 3950 (2001).
http://dx.doi.org/10.1063/1.1426259
17.
K. Kawahara, X.T. Trinh, N.T. Son, E. Janzen, J. Suda, and T. Kimoto, Appl. Phys. Lett. 102, 112106 (2013).
http://dx.doi.org/10.1063/1.4796141
18.
G. Brauer, W. Anwand, W. Skorupa, S. Brandstetter, and C. Teichert, J. Appl. Phys. 99, 023523 (2006).
http://dx.doi.org/10.1063/1.2161940
19.
A. Kawasuso, F. Redmann, R. Krause-Rehberg, M. Yoshikawa, K. Kojima, and H. Itoh, Phys. Status Solidi 223, R8 (2001).
http://dx.doi.org/10.1002/1521-3951(200101)223:23.0.CO;2-N
20.
G. Brauer, W. Anwand, P. Coleman, A. Knights, F. Plazaola, Y. Pacaud, W. Skorupa, J. Störmer, and P. Willutzki, Phys. Rev. B. Condens. Matter 54, 3084 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.3084
21.
Y. Liu, G. Wang, S. Wang, J. Yang, L. Chen, X. Qin, B. Song, B. Wang, and X. Chen, Phys. Rev. Lett. 106, 087205 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.087205
22.
Z.C. Lv, X.P. Ma, H.W. Zheng, R. An, C.X. Peng, J.D. Liu, B.J. Ye, C.L. Diao, X.Y. Liu, and W.F. Zhang, Mater. Lett. 93, 374 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.11.118
23.
B. Song, H. Bao, H. Li, M. Lei, T. Peng, J. Jian, J. Liu, W. Wang, W. Wang, and X. Chen, J. Am. Chem. Soc. 131, 1376 (2009).
http://dx.doi.org/10.1021/ja808507f
24.
Y. Wang, L. Li, S. Prucnal, X. Chen, W. Tong, Z. Yang, F. Munnik, K. Potzger, W. Skorupa, S. Gemming, M. Helm, and S. Zhou, Phys. Rev. B. 89, 014417 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.014417
25.
M. Zhao, F. Pan, and L. Mei, Appl. Phys. Lett. 96, 012508 (2010).
http://dx.doi.org/10.1063/1.3291562
26.
X. Lin and F. Pan, J. Supercond. Nov. Magn. 27, 1513 (2014).
http://dx.doi.org/10.1007/s10948-013-2458-z
27.
K.W. Lee and C.E. Lee, Phys. Rev. Lett. 97, 137206 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.137206
28.
Q. Xu, T. Yoshiie, and M. Okada, J. Nucl. Mater. 386-388, 169 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2008.12.326
29.
S. Jin, P. Zhang, E. Lu, L. Guo, B. Wang, and X. Cao, Acta Mater. 103, 658 (2016).
http://dx.doi.org/10.1016/j.actamat.2015.10.051
30.
L. Yu, H. Jin, D. Liu, Y. Dai, M. Guo, B. Huang, and Z. Zhang, Chem. Phys. Lett. 496, 276 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.060
31.
Y. Wang, Y. Liu, E. Wendler, R. Hübner, W. Anwand, G. Wang, X. Chen, W. Tong, Z. Yang, F. Munnik, G. Bukalis, X. Chen, S. Gemming, M. Helm, and S. Zhou, Phys. Rev. B. 82, 174409 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.174409
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962545
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962545
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962545
2016-09-07
2016-12-09

Abstract

A magnetic method is presented to characterize the concentration of point defects in silicon carbide. In this method, the concentration of common charged point defects, which is related to the density of paramagnetic centers, is determined by fitting the paramagnetic component of the specimen to the Brillouin function. Several parameters in the Brillouin function can be measured such as: the -factor can be obtained from electron spin resonance spectroscopy, and the magnetic moment of paramagnetic centers can be obtained from positron lifetime spectroscopy combined with a first-principles calculation. To evaluate the characterization method, silicon carbide specimens with different concentrations of point defects are prepared with aluminum ion implantation. The fitting results of the densities of paramagnetic centers for the implanted doses of 1 × 1014 cm−2, 1 × 1015 cm−2 and 1 × 1016 cm−2 are 6.52 × 1014/g, 1.14 × 1015/g and 9.45 × 1014/g, respectively. The same trends are also observed for the S-parameters in the Doppler broadening spectra. It is shown that this method is an accurate and convenient way to obtain the concentration of point defects in 4H-SiC.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962545.html;jsessionid=g6HYAy99VaPavVAAHEmtXrqu.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962545&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962545&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962545'
Right1,Right2,Right3,