Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Y. Min, T. S. Kim, Y. Lee, H. Cho, W. Xu, and T. W. Lee, Small 11(1), 45 (2015);
H. C. Chang, C. Lu, C. L. Liu, and W. C. Chen, Adv. Mater. 27(1), 27 (2015).
P. Peumans, S. Uchida, and S. R. Forrest, Nature 425(6954), 158 (2003);
Z. H. Kafafi, C. Y. Kwong, A. B. Djurisic, L. S. M. Lam, and W. K. Chan, Organic Photovoltaics III 4801, 7 (2003).
E. Kaki, A. Altindal, B. Salih, and O. Bekaroglu, Dalton Trans. 44(17), 8293 (2015);
R. Saini, A. Mahajan, R. K. Bedi, D. K. Aswal, and A. K. Debnath, RSC Adv. 4(31), 15945 (2014).
T. Shaymurat, Q. Tang, Y. Tong, L. Dong, and Y. Liu, Adv. Mater. 25(16), 2269 (2013).
K. Xiao, R. Li, J. Tao, E. A. Payzant, I. N. Ivanov, A. A. Puretzky, W. Hu, and D. B. Geohegan, Adv. Funct. Mater. 19(23), 3776 (2009).
Y. Wu, X. Zhang, H. Pan, W. Deng, X. Zhang, X. Zhang, and J. Jie, Sci. Rep. 3, 3248 (2013).
Q. X. Tang, Y. H. Tong, W. P. Hu, Q. Wan, and T. Bjørnholm, Adv. Mater. 21(42), 4234 (2009);
Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang, Y. Liu, and D. Zhu, Adv. Mater. 18(1), 65 (2006).
S. Yim and T. S. Jones, Phys. Rev. B 73(16), 161305 (2006).
H.-B. Xu, H.-Z. Chen, W.-J. Xu, and M. Wang, Chem. Phys. Lett. 412(4-6), 294 (2005).
T. N. Krauss, E. Barrena, T. Lohmuller, J. P. Spatz, and H. Dosch, Phys. Chem. Chem. Phys. 13(13), 5940 (2011).
Y. P. Zhang, X. D. Wang, Y. M. Wu, J. S. Jie, X. W. Zhang, Y. L. Xing, H. H. Wu, B. Zou, X. J. Zhang, and X. H. Zhang, J. Mater. Chem. 22(29), 14357 (2012).
A. Kumar, S. Samanta, A. Singh, M. Roy, S. Singh, S. Basu, M. M. Chehimi, K. Roy, N. Ramgir, M. Navaneethan, Y. Hayakawa, A. K. Debnath, D. K. Aswal, and S. K. Gupta, ACS Appl. Mater. Interfaces 7(32), 17713 (2015);
Y. M. Zhang, Q. J. Liu, J. Zhang, Q. Zhu, and Z. Q. Zhu, J. Mater. Chem. C 2(47), 10067 (2014).
T. Miyata, S. Kawaguchi, and T. Minami, Advanced Sensor Systems and Applications 4920, 230 (2002).
Y. Wu, X. Zhang, H. Pan, X. Zhang, Y. Zhang, X. Zhang, and J. Jie, Nanotechnology 24(35), 355201 (2013).
T. V. Basova, E. K. Kol’tsov, and I. K. Igumenov, Sens. Actuators, B 105(2), 259 (2005).
D. C. Li, Z. H. Peng, L. Z. Deng, Y. F. Shen, and Y. H. Zhou, Vib. Spectrosc. 39(2), 191 (2005).
M. Szybowicz, W. Bała, K. Fabisiak, K. Paprocki, and M. Drozdowski, Cryst. Res. Technol. 45(12), 1265 (2010).
L. Zhang, Y. G. Yang, H. Huang, L. Lyu, H. Zhang, N. T. Cao, H. P. Xie, X. Y. Gao, D. M. Niu, and Y. L. Gao, J. Phy. Chem. C 119(8), 4217 (2015).
X. Y. Wang, J. B. Zheng, K. Qiao, J. R. Qu, and C. D. Cao, Appl. Surf. Sci. 297, 188 (2014).
R. Prabakaran, R. Kesavamoorthy, G. L. N. Reddy, and F. P. Xavier, phys. stat. sol. 229(3), 1175 (2002).<1175::AID-PSSB1175>3.0.CO;2-K
H. K. Yoo, C. Kang, J. W. Lee, Y. Yoon, H. Lee, K. Lee, and C. Kee, Appl. Phys. Express 5(7), 072402 (2012);
S. Yamamoto, Y. Morisawa, H. Sato, H. Hoshina, and Y. Ozaki, J. Phys. Chem. B 117(7), 2180 (2013).
T. V. Basova, V. G. Kiselev, B.-E. Schuster, H. Peisert, and T. Chasse, J. Raman Spectrosc. 40(12), 2080 (2009);
M. Szybowicz, T. Runka, M. Drozdowski, W. Bała, A. Grodzicki, P. Piszczek, and A. Bratkowski, J. Mol. Struct. 704(1-3), 107 (2004).
R. Saini, A. Mahajan, R. K. Bedi, D. K. Aswal, and A. K. Debnath, Sens. Actuators, B 198, 164 (2014).
F. I. Bohrer, C. N. Colesniuc, J. Park, M. E. Ruidiaz, I. K. Schuller, A. C. Kummel, and W. C. Trogler, J. Am. Chem. Soc. 131(2), 478 (2009).

Data & Media loading...


Article metrics loading...



The unsubstituted copper phthalocyanine (CuPc) single crystal nano columns were fabricated for the first time as chlorine (Cl) gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates template-free physical vapor deposition (PVD) approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane<0001>, M-plane<>, R-plane<>), Si and SiO/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly with the increase for Cl within concentration range . These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd