Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
B. R. Beck, C. Y. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, 12th Int. Conf. on Nuclear Reaction Mechanisms (Varenna, Italy), Report LLNL-PROC-415170 (2009).
E. V. Tkalya, Phys. Rev. Lett. 106, 162501 (2011).
Ek. Peik and M. Okhapkin, Comptes Rendus Physique 16, 5 (2015).
L. Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H.-J. Maier, H.-F. Wirth, Ch. Mokry, J. Runke, K. Eberhardt, Ch. Düllmann, N. Trautmann, and P. Thirolf, Nature 533, 47 (2016).
O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, Phys. Rev. A 88, 012512 (2013).
C. J. Campbell, A. G. Radnaev, and A. Kuzmich, Phys. Rev. Lett. 106, 223001 (2011).
E. V. Tkalya, JETP Lett. 55, 211 (1992).
S. G. Porsev and V. V. Flambaum, Phys. Rev. A 81, 042516 (2010).
J. Jeet, Ch. Schneider, S. T. Sullivan, W. G. Rellergert, S. Mirzadeh, A. Cassanho, H. P. Jenssen, E. V. Tkalya, and E. R. Hudson, Phys. Rev. Lett. 114, 253001 (2015).
W. G. Rellergert, D. DeMille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, Phys. Rev. Lett. 104, 200802 (2010).
P. Dessovic, P. Mohn, R. A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm, J. Phys.: Condens. Matter 26, 105402 (2014).
M. Cremona, A. P. Soter, R. A. Nunes, M. H. Do Pinho Mauricio, L. C. Scavarda Do Carmo, R. M. Montereali, S. Martelli, and F. Sommaet, Radiation Effects and Defects in Solids 136, 163 (1995).
J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, Handbook of X-ray Photoelectron Spectroscopy 2nd ed. (J. Chastain, editor), Perkin-Elmer Corporation (Physical Electronics), 1992.
Y. A. Teterin, I. O. Utkin, I. V. Melnikov et al., J. Struct. Chem. 41, 965 (2000).
D. Briggs and J. T. Grant, Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (Chichester IM Publications, 2003).
J. S. Villarrubia, A. E. Vladar, B. Ming, R. J. Kline, D. F. Sunday, J. S. Chawla, and S. List, Ultramicroscopy 154, 15 (2015).
J. E. Rowe, Appl. Phys. Lett. 25, 576 (1974).
W. Y. Ching, Phys. Rev. B 26, 6633 (1982).
P. V. Borisyuk, V. I. Troyan, M. A. Pushkin, V. D. Borman, and V. N. Tronin, J. Nanosci. Nanotechnol. 12, 8751 (2012).
E. V. Tkalya, E. V. Akhrameev, R. V. Arutyunayn, L. A. Bol’shov, and P. S. Kondratenko, Phys. Rev. C 85, 044612 (2012).
I. R. Shein, K. I. Shein, and A. L. Ivanovskii, Phys Chem Minerals 33, 545 (2006).

Data & Media loading...


Article metrics loading...



In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSiO were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSiO-based target is given. The estimation shows that ThSiO is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd