Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962663
1.
A. L. Lehninger, Principles of Biochemistry (Worth Pub. Inc., New York, 1982).
2.
V. Deo, Y. Zhang, V. Soghomonian, and J. J. Heremans, Scientific Reports 5, 9487 (2015).
http://dx.doi.org/10.1038/srep09487
3.
S. A. Wilson, E. Green, I. I. Mathews, M. Benfatto, K. O. Hodgson, B. Hedman, and R. Sarangi, Proc. Natl. Acad. Sci. USA 110, 16333 (2013).
http://dx.doi.org/10.1073/pnas.1315734110
4.
C. Weber, D. J. Cole, D. D. O’Regan, and M. C. Payne, Proc. Natl. Acad. Sci. USA 111, 5790 (2014).
http://dx.doi.org/10.1073/pnas.1322966111
5.
N. Kitagawa, M. Obata, and T. Oda, Chem. Phys. Lett. 643, 119 (2016).
http://dx.doi.org/10.1016/j.cplett.2015.11.026
6.
M. Zborowski, G. R. Ostera, L. R. Moore, S. Milliron, J. J. Chalmers, and A. N. Schechter, Biophys. J. 84, 2638 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75069-3
7.
S. B. Norina and A. N. Shalygin, Biochemistry and Biophysics (BBA) 2, 1 (2014).
8.
D. Kuter, G. A. Venter, K. J. Naidoo, and T. J. Egan, Inorg. Chem. 51, 10233 (2012).
http://dx.doi.org/10.1021/ic301154e
9.
N. Marom, A. Tkatchenko, S. Kapishnikov, L. Kronik, and L. Leiserowitz, Cryst. Growth Des. 11, 3332 (2011).
http://dx.doi.org/10.1021/cg200409d
10.
Y. Mitamura and E. Okamoto, Journal of Magnetism and Magnetic Materials 380, 54 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.10.081
11.
X. Jin, Y. Zhao, A. Richardson, L. Moore, P. Stephen Williams, M. Zborowski, and J. J. Chalmers, Analyst 133, 1767 (2008).
http://dx.doi.org/10.1039/b802113a
12.
J. P. Collman, R. Boulatov, and C. J. Sunderland, in The Porphyrin Handbook edited by K. Kadish, K. Smith, and R. Guilard (Academic Press, San Diego, 2003), vol. 11, pp. 149;
J. P. Collman, R. R. Gagne, C. Reed, T. R. Halbert, G. Lang, and W. T. Robinson, J. Am. Chem. Soc. 97, 1427 (1975).
http://dx.doi.org/10.1021/ja00839a026
13.
J. Mispelter, M. Momenteau, and J. M. Lhoste, J. Chem. Phys. 72, 1003 (2008).
http://dx.doi.org/10.1063/1.439266
14.
B. Delley, Physica B: Condens. Matter 172, 185 (1991).
http://dx.doi.org/10.1016/0921-4526(91)90430-M
15.
N. Matsuzawa, M. Ata, and D. A. Dixon, J. Phys. Chem. 99, 7698 (1995).
http://dx.doi.org/10.1021/j100019a058
16.
T. A. Romanova and P. O. Krasnov, Chem. Phys. Lett. 420, 281 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.12.067
17.
M. F. Perutz, S. S. Hasnain, P. J. Duke, J. L. Sessler, and J. E. Hahn, Ultramicroscopy 9, 31 (1982).
http://dx.doi.org/10.1016/0304-3991(82)90226-1
18.
L. Powers, J. L. Sessler, G. L. Woolery, and B. Chance, Biochemistry 23, 5519 (1984).
http://dx.doi.org/10.1021/bi00318a021
19.
R. G. Shulman, Proc. Nat. Acad. Sci. USA 84, 973 (1986).
http://dx.doi.org/10.1073/pnas.84.4.973
20.
J. Vojtechovský, K. Chu, J. Berendzen, R. M. Sweet, and I. Schlichting, Biophys. J. 77, 2153 (1999).
21.
L. J. Radonovich, A. Bloom, and J. L. Hoard, J. Am. Chem. Soc. 94, 2073 (1972).
http://dx.doi.org/10.1021/ja00761a046
22.
C. A. Reed, T. Mashiko, W. R. Scheidt, K. Spartalian, and G. Lang, J. Am. Chem. Soc. 102, 2302 (1980).
http://dx.doi.org/10.1021/ja00527a028
23.
P. M. Kozlowski, T. G. Spiro, A. Bérces, and M. Z. Zgierski, J. Phys. Chem. B 102, 2603 (1998).
http://dx.doi.org/10.1021/jp973346d
24.
K. P. Jensen, B. O. Roos, and U. Ryde, J. Inorg. Biochem. 99, 45 (2005).
http://dx.doi.org/10.1016/j.jinorgbio.2004.11.008
25.
M. P. Johansson, D. Sundholm, G. Gerfen, and M. Wikström, J. Am. Chem. Soc. 124, 11771 (2002).
http://dx.doi.org/10.1021/ja026523j
26.
J. M. Ugalde, B. Dunietz, A. Dreuw, M. Head-Gordon, and R. J. Boyd, J. Phys. Chem. A 108, 4653 (2004).
http://dx.doi.org/10.1021/jp0489119
27.
C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello, J. Phys. Chem. A 101, 8914 (1997).
http://dx.doi.org/10.1021/jp9722115
28.
E. C. Stoner, Proc. R. Soc. London, Serie A 169, 339 (1939).
http://dx.doi.org/10.1098/rspa.1939.0003
29.
C. M. Teodorescu and G. A. Lungu, Journal of Optoelectronics and Advanced Materials 10, 3058 (2008).
30.
G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki, M. Gubbins, and R. M. Bowman, Appl. Phys. Rev. 3, 011301 (2016).
http://dx.doi.org/10.1063/1.4941311
31.
W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).
http://dx.doi.org/10.1021/jp960669l
32.
M. Däne, A. Gonis, D. M. Nicholson, and G. M. Stocks, J. Phys. Chem. Sol 79, 55 (2015).
http://dx.doi.org/10.1016/j.jpcs.2014.09.013
33.
B. Aradi, B. Hourahine, and Th. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).
http://dx.doi.org/10.1021/jp070186p
34.
T. Petrenko and F. Neese, J. Chem. Phys. 127, 164319 (2007).
http://dx.doi.org/10.1063/1.2770706
35.
F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).
http://dx.doi.org/10.1002/wcms.81
36.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993);
http://dx.doi.org/10.1063/1.464913
A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
http://dx.doi.org/10.1063/1.4869598
37.
M. C. Durrant, Dalton Trans. 43, 9754 (2014).
http://dx.doi.org/10.1039/c4dt01103a
38.
T. M. Maier, H. Bahmann, A. V. Arbuznikov, and M. Kaupp, J. Chem. Phys. 144, 074106 (2016).
http://dx.doi.org/10.1063/1.4941919
39.
F. Baniasadi, M. M. Tehranchi, M. B. Fathi, N. Safari, and V. Amani, Phys. Chem. Chem. Phys. 17, 19119 (2015).
http://dx.doi.org/10.1039/C5CP02770E
40.
S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, and F. Neese, J. Phys. Chem. A 110, 2235 (2006).
http://dx.doi.org/10.1021/jp056016z
41.
A. Jinich, D. Rappoport, I. Dunn, B. Sanchez-Lengeling, R. Olivares-Amaya, E. Noor, A. B. Even, and A. Aspuru-Guzik, Scientific Reports 4, 7022 (2014).
http://dx.doi.org/10.1038/srep07022
42.
P. Bour, J. Kubelka, and T. A. Keiderling, Biopolymers 65, 45 (2002).
http://dx.doi.org/10.1002/bip.10224
43.
J. Gimsa, T. Müller, T. Schnelle, and G. Fuhr, Biophys. J. 71, 495 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79251-2
44.
F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland Pr. Inc., Long Grove, 2008).
45.
T. Takano and R. E. Dickerson, J. Mol. Biol. 153, 95 (1981).
http://dx.doi.org/10.1016/0022-2836(81)90529-5
46.
D. Dai, M.-H. Whangbo, and H.-J. Koo, Inorg. Chem 44, 2407 (2005).
http://dx.doi.org/10.1021/ic048431w
47.
S. Borek, J. Braun, J. Minr, and H. Ebert, Phys. Rev. B 92, 075126 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.075126
48.
K. H. J. Buschow, and F. R. de Boer, Physics of Magnetism and Magnetic Materials (Kluwer Academic/Plenum Publishers, New York, 2003), p. 11.
49.
J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 7th ed. (Freeman, New York, 2010).
50.
T. Straasø, S. Kapishnikov, K. Kato, M. Takata, J. Als-Nielsen, and L. Leiserowitz, Cryst. Growth Des. 11, 3342 (2011).
http://dx.doi.org/10.1021/cg200410b
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962663
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962663
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962663
2016-09-09
2016-09-29

Abstract

Magnetic field interactions with particles, as observed in magnetophoresis, are becoming important tool to understand the nature of the iron role in heme molecular complex, besides other useful applications. Accurate estimations of some macroscopic magnetic properties from quantum mechanical calculations, such as the magnetic susceptibility, can also check the reliability of the heme microscopic models. In this work we report, by using the Stoner criterion, a simple way to obtain the magnetic susceptibility of the heme complex from Density Functional Theory calculations. Some of our calculated structural properties and electronic structure show good agreement with both the available experimental and theoretical data, and the results show that its groundstate is a triplet 3A state. From the obtained results, we have evaluated the exchange interaction energy, J = 0.98 eV, the associated magnetic energy gain, eV, and the magnetic susceptibility, cm3/mol for the heme alone (with uncompleted Fe ligands). If we consider the heme complex with the two histidine residues (completing the Fe ligands), we have then obtained cm3/g, which is in good agreement with experimental magnetophoresis data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962663.html;jsessionid=sezlADQbOS77XUFlGbe8B9wp.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962663&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962663&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962663'
Right1,Right2,Right3,