Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Vogel, Nat. Nanotechnol. 2, 25 (2007).
S. O. Demokritov and A. N. Slavin, Magnonics (Springer, Berlin Heidelberg, Berlin, 2013).
A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D. Appl. Phys. 43, 264002 (2010).
N. Sato, K. Sekiguchi, and Y. Nozaki, Appl. Phys. Express 6, 063001 (2013).
T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).
A. Khitun and K. L. Wang, J. Appl. Phys. 110, 034306 (2011).
A. Khitun, M. Bao, and K. L. Wang, Superlattices Microstruct. 47, 464 (2010).
A. Khitun, M. Bao, and K. L. Wang, J. Phys. D. Appl. Phys. 43, 264005 (2010).
S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands, and A. V. Chumak, Appl. Phys. Lett. 106, 212406 (2015).
A. Kehlberger, K. Richter, M. C. Onbasli, G. Jakob, D. H. Kim, T. Goto, C. A. Ross, G. Götz, G. Reiss, T. Kuschel, and M. Kläui, Phys. Rev. Appl. 4, 014008 (2015).
S. Kahl and A. M. Grishin, J. Appl. Phys. 93, 6945 (2003).
H. Yu, O. d’Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, R. Huber, I. Stasinopoulos, and D. Grundler, Sci. Rep. 4, 6848 (2014).
M. C. Onbasli, A. Kehlberger, D. H. Kim, G. Jakob, M. Kläui, A. V. Chumak, B. Hillebrands, and C. A. Ross, APL Mater. 2, 106102 (2014).
Y. Sun, Y.-Y. Song, H. Chang, M. Kabatek, M. Jantz, W. Schneider, M. Wu, H. Schultheiss, and A. Hoffmann, Appl. Phys. Lett. 101, 152405 (2012).
J. D. Adam, Proc. IEEE 76, 159 (1988).
A. V. Chumak, A. A. Serga, S. Wolff, B. Hillebrands, and M. P. Kostylev, Appl. Phys. Lett. 94, 172511 (2009).
W. S. Ishak, Proc. IEEE 76, 171 (1988).
J. Fassbender and J. McCord, Appl. Phys. Lett. 88, 33 (2006).
C. Luo, Z. Feng, Y. Fu, W. Zhang, P. K. J. Wong, Z. X. Kou, Y. Zhai, H. F. Ding, M. Farle, J. Du, and H. R. Zhai, Phys. Rev. B 89, 184412 (2014).
H.-S. Song, K.-D. Lee, J.-W. Sohn, S.-H. Yang, S. S. P. Parkin, C.-Y. You, and S.-C. Shin, Appl. Phys. Lett. 103, 022406 (2013).
F. Roozeboom and E. van de Riet, J. Appl. Phys. 81, 350 (1997).
B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y. Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 1 (2011).
J. H. Collins, D. M. Hastie, J. M. Owens, and C. V. Smith, J. Appl. Phys. 49, 1800 (1978).
R. C. LeCraw, E. G. Spencer, and C. S. Porter, Phys. Rev. 110, 1311 (1958).
A. Dobin and R. Victora, Phys. Rev. Lett. 92, 257204 (2004).
M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791 (1961).
G. A. Melkov, Y. V. Kobljanskyj, A. A. Serga, and V. S. Tiberkevich, Phys. Rev. Lett. 86, 4918 (2001).
G. A. Melkov, V. I. Vasyuchka, Y. V. Kobljanskyj, and A. N. Slavin, Phys. Rev. B 70, 1 (2004).
C. Bilzer, T. Devolder, P. Crozat, C. Chappert, S. Cardoso, and P. P. Freitas, J. Appl. Phys. 101, 074505 (2007).
S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl. Phys. 99, 093909 (2006).
K. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S. S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, and Z. Frait, Phys. Rev. B 76, 104416 (2007).
J. M. L. Beaujour, W. Chen, K. Krycka, C. C. Kao, J. Z. Sun, and A. D. Kent, Eur. Phys. J. B 59, 475 (2007).
J. M. Shaw, H. T. Nembach, and T. J. Silva, J. Appl. Phys. 108 (2010).
A. M. Szaplonczay and H. H. D. Quon, J. Mater. Sci. 7, 1280 (1972).

Data & Media loading...


Article metrics loading...



Spin waves (SWs) have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs) are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd