Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962664
1.
E. Vogel, Nat. Nanotechnol. 2, 25 (2007).
http://dx.doi.org/10.1038/nnano.2006.142
2.
S. O. Demokritov and A. N. Slavin, Magnonics (Springer, Berlin Heidelberg, Berlin, 2013).
3.
A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D. Appl. Phys. 43, 264002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/26/264002
4.
N. Sato, K. Sekiguchi, and Y. Nozaki, Appl. Phys. Express 6, 063001 (2013).
http://dx.doi.org/10.7567/APEX.6.063001
5.
T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and M. P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008).
http://dx.doi.org/10.1063/1.2834714
6.
A. Khitun and K. L. Wang, J. Appl. Phys. 110, 034306 (2011).
http://dx.doi.org/10.1063/1.3609062
7.
A. Khitun, M. Bao, and K. L. Wang, Superlattices Microstruct. 47, 464 (2010).
http://dx.doi.org/10.1016/j.spmi.2009.11.004
8.
A. Khitun, M. Bao, and K. L. Wang, J. Phys. D. Appl. Phys. 43, 264005 (2010).
http://dx.doi.org/10.1088/0022-3727/43/26/264005
9.
S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands, and A. V. Chumak, Appl. Phys. Lett. 106, 212406 (2015).
http://dx.doi.org/10.1063/1.4921850
10.
A. Kehlberger, K. Richter, M. C. Onbasli, G. Jakob, D. H. Kim, T. Goto, C. A. Ross, G. Götz, G. Reiss, T. Kuschel, and M. Kläui, Phys. Rev. Appl. 4, 014008 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.4.014008
11.
S. Kahl and A. M. Grishin, J. Appl. Phys. 93, 6945 (2003).
http://dx.doi.org/10.1063/1.1543855
12.
H. Yu, O. d’Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, R. Huber, I. Stasinopoulos, and D. Grundler, Sci. Rep. 4, 6848 (2014).
http://dx.doi.org/10.1038/srep06848
13.
M. C. Onbasli, A. Kehlberger, D. H. Kim, G. Jakob, M. Kläui, A. V. Chumak, B. Hillebrands, and C. A. Ross, APL Mater. 2, 106102 (2014).
http://dx.doi.org/10.1063/1.4896936
14.
Y. Sun, Y.-Y. Song, H. Chang, M. Kabatek, M. Jantz, W. Schneider, M. Wu, H. Schultheiss, and A. Hoffmann, Appl. Phys. Lett. 101, 152405 (2012).
http://dx.doi.org/10.1063/1.4759039
15.
J. D. Adam, Proc. IEEE 76, 159 (1988).
http://dx.doi.org/10.1109/5.4392
16.
A. V. Chumak, A. A. Serga, S. Wolff, B. Hillebrands, and M. P. Kostylev, Appl. Phys. Lett. 94, 172511 (2009).
http://dx.doi.org/10.1063/1.3127227
17.
W. S. Ishak, Proc. IEEE 76, 171 (1988).
http://dx.doi.org/10.1109/5.4393
18.
J. Fassbender and J. McCord, Appl. Phys. Lett. 88, 33 (2006).
http://dx.doi.org/10.1063/1.2213948
19.
C. Luo, Z. Feng, Y. Fu, W. Zhang, P. K. J. Wong, Z. X. Kou, Y. Zhai, H. F. Ding, M. Farle, J. Du, and H. R. Zhai, Phys. Rev. B 89, 184412 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.184412
20.
H.-S. Song, K.-D. Lee, J.-W. Sohn, S.-H. Yang, S. S. P. Parkin, C.-Y. You, and S.-C. Shin, Appl. Phys. Lett. 103, 022406 (2013).
http://dx.doi.org/10.1063/1.4813542
21.
F. Roozeboom and E. van de Riet, J. Appl. Phys. 81, 350 (1997).
22.
B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y. Y. Song, Y. Sun, and M. Wu, Phys. Rev. Lett. 107, 1 (2011).
23.
J. H. Collins, D. M. Hastie, J. M. Owens, and C. V. Smith, J. Appl. Phys. 49, 1800 (1978).
http://dx.doi.org/10.1063/1.324870
24.
R. C. LeCraw, E. G. Spencer, and C. S. Porter, Phys. Rev. 110, 1311 (1958).
http://dx.doi.org/10.1103/PhysRev.110.1311
25.
A. Dobin and R. Victora, Phys. Rev. Lett. 92, 257204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.257204
26.
M. Sparks, R. Loudon, and C. Kittel, Phys. Rev. 122, 791 (1961).
http://dx.doi.org/10.1103/PhysRev.122.791
27.
G. A. Melkov, Y. V. Kobljanskyj, A. A. Serga, and V. S. Tiberkevich, Phys. Rev. Lett. 86, 4918 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4918
28.
G. A. Melkov, V. I. Vasyuchka, Y. V. Kobljanskyj, and A. N. Slavin, Phys. Rev. B 70, 1 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.224407
29.
C. Bilzer, T. Devolder, P. Crozat, C. Chappert, S. Cardoso, and P. P. Freitas, J. Appl. Phys. 101, 074505 (2007).
http://dx.doi.org/10.1063/1.2716995
30.
S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl. Phys. 99, 093909 (2006).
http://dx.doi.org/10.1063/1.2197087
31.
K. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S. S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, and Z. Frait, Phys. Rev. B 76, 104416 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.104416
32.
J. M. L. Beaujour, W. Chen, K. Krycka, C. C. Kao, J. Z. Sun, and A. D. Kent, Eur. Phys. J. B 59, 475 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00071-1
33.
J. M. Shaw, H. T. Nembach, and T. J. Silva, J. Appl. Phys. 108 (2010).
http://dx.doi.org/10.1063/1.3506688
34.
A. M. Szaplonczay and H. H. D. Quon, J. Mater. Sci. 7, 1280 (1972).
http://dx.doi.org/10.1007/BF00550693
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962664
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962664
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962664
2016-09-08
2016-12-07

Abstract

Spin waves (SWs) have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs) are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962664.html;jsessionid=iBaSWhKfMbDaHJEB_9LKYeRf.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962664&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962664&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962664'
Right1,Right2,Right3,