Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, and R. P. Cowburn, Science 296, 2003 (2002);
D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005).
S. S. P. Parkin, U.S. patent 6,834,005 (2004);
S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
R. Moriya, L. Thomas, M. Hayashi, Yaroslaw B. Bazaliy, C. Rettner, S. S. P. Parkin, Nature 4, 368 (2008);
M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, Science 320, 209 (2008).
H.-G. Piao, H.-C. Choi, J.-H. Shim, D.-H. Kim, and C.-Y. You, Appl. Phys. Lett. 99, 192512 (2011).
J.-S. Kim, M. A. Mawass, A. Bisig, B. Krüger, R. M. Reeve, T. Schulz, F. Büttner, J. Yoon, C.-Y. You, M. Weigand, H. Stoll, G. Schütz, H. J. M. Swagten, B. Koopmans, S. Eisebitt, and M. Kläui1, Nat. Commun. 5, 3429 (2014).
C.-Y. You, Appl. Phys. Lett. 92, 152507 (2008);
C.-Y. You, Appl. Phys. Lett. 92, 192514 (2008).
C. Chen, H.-G. Piao, J.-H. Shim, L.-Q. Pan, and D.-H. Kim, Chin. Phys. Lett. 32, 087502 (2015).
N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
G. Meier, M. Bolte, R. Eiselt, B. Kraeuger, D.-H. Kim, and P. Fischer, Phys. Rev. Lett. 98, 187202 (2007).
D.-S. Han, S.-K. Kim, J.-Y. Lee, S. J. Hermsoerfer, H. Schutheiss, B. Leven, and B. Hillebrands, Appl. Phys. Lett. 94, 112502 (2009).
X. S. Wang, P. Yan, Y. H. Shen, G. E. W. Bauer, and X. R. Wang, Phys. Rev. Lett. 109, 167209 (2012).
O. Descalzi, M. Clerc, S. Residori, and G. Assanto, Localized States in Physics: Solitons and Patterns (Springer, Berlin Heidelberg, 2011).
T. Dauxois and M. Perard, Physics of Solitons (Cambridge University, UK, 2006).
A. Himeno, S. Kasai, and T. Ono, Appl. Phys. Lett. 87, 243108 (2005).
H.-G. Piao, J.-H. Shim, S.-H. Lee, D. Djuhana, S.-K. Oh, S.-C. Yu, and D.-H. Kim, IEEE Trans. Magn. 45, 3926 (2009).
A. Pérez-Junquera, V. I. Marconi, A. B. Kolton, L. M. Álvarez-Prado, Y. Souche, A. Alija, M. Vélez, and J. V. Anguita, J. M. Alameda,1 J. I. Martín,1 and J. M. R. Parrondo, Phys. Rev. Lett. 100, 037203 (2008).
C. Castán-Guerrero, J. Herrero-Albillos, J. Sesé, J. Bartolomé, F. Bartolomé, A. Hierro-Rodriguez, F. Valdés-Bango, J. I. Martín, J. M. Alameda, and L. M. García, Physica B 455, 76 (2014).
N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, Berlin, Heidelberg, 2008).
R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042 (1999);
R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000).
M. C. B. Parish and M. Forshaw, Appl. Phys. Lett. 83, 2046 (2003).
A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, Science 311, 205 (2006).
K.-D. Lee, C.-Y. You, H.-S. Song, B.-G. Park, and S.-C. Shin, Appl. Phys. Lett. 104, 052416 (2014).
K.-D. Lee, Y. M. Kim, H.-S. Song, C.-Y. You, J.-I. Hong, and B.-G. Park, Appl. Phys. Express 8, 103003 (2015).
R. Wieser, E. Y. Vedmedenko, and R. Wiesendanger, Phys. Rev. B 81, 024405 (2010).
D. Bouzidi and H. Suhl, Phys. Rev. Lett. 65, 2587 (1990).
X. S. Wang, P. Yan, Y. H. Shen, G. E. W. Bauer, and X. R. Wang, Phys. Rev. Lett. 109, 167209 (2012).
M. J. Donahue and D. G. Porter, OOMMF User’s Guide, (2002).
H.-G. Piao, D. Djuhana, S. H. Lee, J.-H. Shim, S.-H. Jun, and D.-H. Kim, New Physics: Sae Mulli 58, 715 (2009).
D. M. Burn and D. Atkinson, Appl. Phys. Lett. 102, 242414 (2013).
E. Beaurepaire, H. Bulou, F. Scheurer, and J. P. Kappler, Magnetism: A Synchrotron Radiation Approach (Springer, Berlin Heidelberg New York, 2006).

Data & Media loading...


Article metrics loading...



Dynamic behavior of a magnetization state transfer is investigated in L-type arrayed discrete ferromagnetic nanodot chains by means of micromagnetic simulations. Under magnetic driving fields, magnetization state transfer behaviors are examined intensively with the variation of the discrete nanodot geometry and dimension in magnetic chains, which is similar to a virtual magnetic domain wall motion. In the magnetic chain system, a stepwise-propagating behavior of the virtual magnetic domain wall is clearly observed without the Walker breakdown phenomenon, if the geometric ratio of magnetic nanodots becomes larger. Interestingly, the average velocity of virtual domain wall in different magnetic chains is almost same under each onset field even is proportional to the ratio of the external field to the onset field, which should be attributed to the contribution of the opposite dipolar field interaction between adjacent nanodots in ferromagnetic chain systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd