Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962667
1.
D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, and R. P. Cowburn, Science 296, 2003 (2002);
http://dx.doi.org/10.1126/science.1070595
D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005).
http://dx.doi.org/10.1126/science.1108813
2.
S. S. P. Parkin, U.S. patent 6,834,005 (2004);
S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
3.
R. Moriya, L. Thomas, M. Hayashi, Yaroslaw B. Bazaliy, C. Rettner, S. S. P. Parkin, Nature 4, 368 (2008);
M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, Science 320, 209 (2008).
http://dx.doi.org/10.1126/science.1154587
4.
H.-G. Piao, H.-C. Choi, J.-H. Shim, D.-H. Kim, and C.-Y. You, Appl. Phys. Lett. 99, 192512 (2011).
http://dx.doi.org/10.1063/1.3658805
5.
J.-S. Kim, M. A. Mawass, A. Bisig, B. Krüger, R. M. Reeve, T. Schulz, F. Büttner, J. Yoon, C.-Y. You, M. Weigand, H. Stoll, G. Schütz, H. J. M. Swagten, B. Koopmans, S. Eisebitt, and M. Kläui1, Nat. Commun. 5, 3429 (2014).
6.
C.-Y. You, Appl. Phys. Lett. 92, 152507 (2008);
http://dx.doi.org/10.1063/1.2912521
C.-Y. You, Appl. Phys. Lett. 92, 192514 (2008).
http://dx.doi.org/10.1063/1.2931069
7.
C. Chen, H.-G. Piao, J.-H. Shim, L.-Q. Pan, and D.-H. Kim, Chin. Phys. Lett. 32, 087502 (2015).
http://dx.doi.org/10.1088/0256-307X/32/8/087502
8.
N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).
http://dx.doi.org/10.1063/1.1663252
9.
G. Meier, M. Bolte, R. Eiselt, B. Kraeuger, D.-H. Kim, and P. Fischer, Phys. Rev. Lett. 98, 187202 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.187202
10.
D.-S. Han, S.-K. Kim, J.-Y. Lee, S. J. Hermsoerfer, H. Schutheiss, B. Leven, and B. Hillebrands, Appl. Phys. Lett. 94, 112502 (2009).
http://dx.doi.org/10.1063/1.3098409
11.
X. S. Wang, P. Yan, Y. H. Shen, G. E. W. Bauer, and X. R. Wang, Phys. Rev. Lett. 109, 167209 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167209
12.
O. Descalzi, M. Clerc, S. Residori, and G. Assanto, Localized States in Physics: Solitons and Patterns (Springer, Berlin Heidelberg, 2011).
13.
T. Dauxois and M. Perard, Physics of Solitons (Cambridge University, UK, 2006).
14.
A. Himeno, S. Kasai, and T. Ono, Appl. Phys. Lett. 87, 243108 (2005).
http://dx.doi.org/10.1063/1.2140884
15.
H.-G. Piao, J.-H. Shim, S.-H. Lee, D. Djuhana, S.-K. Oh, S.-C. Yu, and D.-H. Kim, IEEE Trans. Magn. 45, 3926 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2021668
16.
A. Pérez-Junquera, V. I. Marconi, A. B. Kolton, L. M. Álvarez-Prado, Y. Souche, A. Alija, M. Vélez, and J. V. Anguita, J. M. Alameda,1 J. I. Martín,1 and J. M. R. Parrondo, Phys. Rev. Lett. 100, 037203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.037203
17.
C. Castán-Guerrero, J. Herrero-Albillos, J. Sesé, J. Bartolomé, F. Bartolomé, A. Hierro-Rodriguez, F. Valdés-Bango, J. I. Martín, J. M. Alameda, and L. M. García, Physica B 455, 76 (2014).
http://dx.doi.org/10.1016/j.physb.2014.07.049
18.
N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, Berlin, Heidelberg, 2008).
19.
R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042 (1999);
http://dx.doi.org/10.1103/PhysRevLett.83.1042
R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000).
http://dx.doi.org/10.1126/science.287.5457.1466
20.
M. C. B. Parish and M. Forshaw, Appl. Phys. Lett. 83, 2046 (2003).
http://dx.doi.org/10.1063/1.1608492
21.
A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, Science 311, 205 (2006).
http://dx.doi.org/10.1126/science.1120506
22.
K.-D. Lee, C.-Y. You, H.-S. Song, B.-G. Park, and S.-C. Shin, Appl. Phys. Lett. 104, 052416 (2014).
http://dx.doi.org/10.1063/1.4864361
23.
K.-D. Lee, Y. M. Kim, H.-S. Song, C.-Y. You, J.-I. Hong, and B.-G. Park, Appl. Phys. Express 8, 103003 (2015).
http://dx.doi.org/10.7567/APEX.8.103003
24.
R. Wieser, E. Y. Vedmedenko, and R. Wiesendanger, Phys. Rev. B 81, 024405 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024405
25.
D. Bouzidi and H. Suhl, Phys. Rev. Lett. 65, 2587 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2587
26.
X. S. Wang, P. Yan, Y. H. Shen, G. E. W. Bauer, and X. R. Wang, Phys. Rev. Lett. 109, 167209 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167209
27.
M. J. Donahue and D. G. Porter, OOMMF User’s Guide, http://math.nist.gov/oommf (2002).
28.
H.-G. Piao, D. Djuhana, S. H. Lee, J.-H. Shim, S.-H. Jun, and D.-H. Kim, New Physics: Sae Mulli 58, 715 (2009).
29.
D. M. Burn and D. Atkinson, Appl. Phys. Lett. 102, 242414 (2013).
http://dx.doi.org/10.1063/1.4811750
30.
E. Beaurepaire, H. Bulou, F. Scheurer, and J. P. Kappler, Magnetism: A Synchrotron Radiation Approach (Springer, Berlin Heidelberg New York, 2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962667
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962667
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962667
2016-09-08
2016-12-04

Abstract

Dynamic behavior of a magnetization state transfer is investigated in L-type arrayed discrete ferromagnetic nanodot chains by means of micromagnetic simulations. Under magnetic driving fields, magnetization state transfer behaviors are examined intensively with the variation of the discrete nanodot geometry and dimension in magnetic chains, which is similar to a virtual magnetic domain wall motion. In the magnetic chain system, a stepwise-propagating behavior of the virtual magnetic domain wall is clearly observed without the Walker breakdown phenomenon, if the geometric ratio of magnetic nanodots becomes larger. Interestingly, the average velocity of virtual domain wall in different magnetic chains is almost same under each onset field even is proportional to the ratio of the external field to the onset field, which should be attributed to the contribution of the opposite dipolar field interaction between adjacent nanodots in ferromagnetic chain systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962667.html;jsessionid=ZGOQUG3XBLe3O4tCI6dlg8g8.x-aip-live-03?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962667&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962667&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962667'
Right1,Right2,Right3,