Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962764
1.
H. Zhang, Y. Ma, Y. Wan, X. Rong, Z. Xie, W. Wang, and L. Dai, Appl. Phys. Lett. 10, 101904 (2015).
http://dx.doi.org/10.1063/1.4930257
2.
E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985).
3.
N. Bloembergen, Nonlinear optics (Benjamin, New York, 1965).
4.
W. N. Nerman and L. M. Hayden, J. Opt. Soc. Am. 12, 416 (1995).
5.
J.-J. Li, Z.-Y. Li, and D.-Z. Zhang, Phys. Rev. E 75, 056606 (2007).
6.
P. Szczepański, T. Osuch, and Z. Jaroszewicz, Appl. Opt. 48, 5401 (2009).
7.
S. M. Hamidi, T. Parvini, and M. M. Tehranchi, Appl. Phys. A 11, 525 (2013).
http://dx.doi.org/10.1007/s00339-013-7599-1
8.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nanotech. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
9.
K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Nature Nanotech. 10, 407 (2015).
http://dx.doi.org/10.1038/nnano.2015.73
10.
M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, Phys. Rev. B 89, 201302 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.201302
11.
Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Nature (London) 513, 214 (2014).
http://dx.doi.org/10.1038/nature13734
12.
M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Nature Nanotech. 10, 503 (2015).
http://dx.doi.org/10.1038/nnano.2015.67
13.
M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger, and A. Kis, Nanotech. 22, 125706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/12/125706
14.
M. R. Muller, A. Gumprich, E. Ecik, K. T. Kallis, F. Winkler, B. Kardynal, I. Petrov, U. Kunze, and J. Knoch, J. Appl. Phys. 118, 145305 (2015).
15.
S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, ACS Nano 6, 7381 (2012).
http://dx.doi.org/10.1021/nn3025173
16.
J.-H. Fan, P. Gao, A.-M. Zhang, B.-R. Zhu, H.-L. Zeng, X.-D. Cui, R. He, and Q.-M. Zhang, J. Appl. Phys. 115, 053527 (2014).
http://dx.doi.org/10.1063/1.4862859
17.
C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elıas, N.-P. Lopez, M. Terrones, V. Crespi, and Z. Liu, Sci. Rep. 4, 5530 (2014).
18.
G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Phys. Rev. Lett. 114, 097403 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.097403
19.
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazi, M. Gibertini, N. Marzari, O. Lopez Sanchez, Y. C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta I Morral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2015).
http://dx.doi.org/10.1021/acsnano.5b01281
20.
Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, Nano Lett. 13, 3329 (2013).
http://dx.doi.org/10.1021/nl401561r
21.
D. J. Clark, V. Senthilkumar, C. T. Le, D. L. Weerawarne, B. Shim, J. I. Jang, J. H. Shim, J. Cho, Y. Sim, M.-J. Seong, S. H. Rhim, A. J. Freeman, K.-H. Chung, and Y. S. Kim, Phys. Rev. B 90, 121409 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.121409
22.
W. T. Hsu, Z. A. Zhao, L. J. Li, C. H. Chen, M. H. Chiu, P. S. Chang, Y. C. Chou, and W. H. Chang, ACS Nano 8, 2951 (2014).
http://dx.doi.org/10.1021/nn500228r
23.
L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, Phys. Rev. B 87, 201401 (2014).
24.
H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, Appl. Phys. Lett. 105, 201905 (2014).
http://dx.doi.org/10.1063/1.4901836
25.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
26.
J. J. Dean and H. M. van Driel, Appl. Phys. Lett. 95, 261910 (2014).
http://dx.doi.org/10.1063/1.3275740
27.
H.-C. Kim, H. Kim, J.-U. Lee, H.-B. Lee, D.-H. Choi, J.-H. Lee, W. H. Lee, S.-H. Jhang, B. H. Park, H. Cheong, S.-W. Lee, and H.-J. Chung, ACS Nano 9, 6854 (2015).
http://dx.doi.org/10.1021/acsnano.5b01727
28.
W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2013).
http://dx.doi.org/10.1021/nn305275h
29.
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, Science 340, 1311 (2013).
http://dx.doi.org/10.1126/science.1235547
30.
A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, Nature Phot. 9, 466 (2015).
http://dx.doi.org/10.1038/nphoton.2015.104
31.
C. Ballif, M. Regula, and F. Levy, Solar Energy Materials and Solar Cells 57, 189 (1999).
http://dx.doi.org/10.1016/S0927-0248(98)00187-1
32.
A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165217
33.
S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, ACS Nano 9, 7142 (2015).
http://dx.doi.org/10.1021/acsnano.5b03480
34.
R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. 23, 123 (1987).
http://dx.doi.org/10.1109/JQE.1987.1073206
35.
D. Wickramaratne, F. Zahid, and R. K. Lake, J. Chem. Phys. 140, 124710 (2014).
http://dx.doi.org/10.1063/1.4869142
36.
R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).
37.
B. R. Bennett, R. A. Soref, and J. A. Del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
http://dx.doi.org/10.1109/3.44924
38.
G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, Photon. Res. 3, A51 (2015).
http://dx.doi.org/10.1364/PRJ.3.000A51
39.
Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, Proc. Nat. Acad. Sci. USA 112, 11800 (2015).
http://dx.doi.org/10.1073/pnas.1504920112
40.
S. D. Lavrov, A. V. Kudryavtsev, A. P. Shestakova, L. Kulyuk, and E. D. Mishina, Optics and Spectroscopy 120, 808 (2016).
http://dx.doi.org/10.1134/S0030400X16050180
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962764
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962764
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962764
2016-09-09
2016-12-06

Abstract

The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG) field. The model is applied to the calculation of second harmonic (SH) field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering) in 2D semiconductors that is extremely important for characterization of these unique materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962764.html;jsessionid=MloYYp7v4Otn8i3eLPb8wJlt.x-aip-live-06?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962764&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962764&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962764'
Right1,Right2,Right3,