Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Zhang, Y. Ma, Y. Wan, X. Rong, Z. Xie, W. Wang, and L. Dai, Appl. Phys. Lett. 10, 101904 (2015).
E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985).
N. Bloembergen, Nonlinear optics (Benjamin, New York, 1965).
W. N. Nerman and L. M. Hayden, J. Opt. Soc. Am. 12, 416 (1995).
J.-J. Li, Z.-Y. Li, and D.-Z. Zhang, Phys. Rev. E 75, 056606 (2007).
P. Szczepański, T. Osuch, and Z. Jaroszewicz, Appl. Opt. 48, 5401 (2009).
S. M. Hamidi, T. Parvini, and M. M. Tehranchi, Appl. Phys. A 11, 525 (2013).
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nanotech. 7, 699 (2012).
K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Nature Nanotech. 10, 407 (2015).
M. M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbaszek, Phys. Rev. B 89, 201302 (2014).
Z. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, Nature (London) 513, 214 (2014).
M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Nature Nanotech. 10, 503 (2015).
M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger, and A. Kis, Nanotech. 22, 125706 (2011).
M. R. Muller, A. Gumprich, E. Ecik, K. T. Kallis, F. Winkler, B. Kardynal, I. Petrov, U. Kunze, and J. Knoch, J. Appl. Phys. 118, 145305 (2015).
S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, ACS Nano 6, 7381 (2012).
J.-H. Fan, P. Gao, A.-M. Zhang, B.-R. Zhu, H.-L. Zeng, X.-D. Cui, R. He, and Q.-M. Zhang, J. Appl. Phys. 115, 053527 (2014).
C. Janisch, Y. Wang, D. Ma, N. Mehta, A. L. Elıas, N.-P. Lopez, M. Terrones, V. Crespi, and Z. Liu, Sci. Rep. 4, 5530 (2014).
G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Phys. Rev. Lett. 114, 097403 (2015).
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazi, M. Gibertini, N. Marzari, O. Lopez Sanchez, Y. C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta I Morral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2015).
Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, Nano Lett. 13, 3329 (2013).
D. J. Clark, V. Senthilkumar, C. T. Le, D. L. Weerawarne, B. Shim, J. I. Jang, J. H. Shim, J. Cho, Y. Sim, M.-J. Seong, S. H. Rhim, A. J. Freeman, K.-H. Chung, and Y. S. Kim, Phys. Rev. B 90, 121409 (2014).
W. T. Hsu, Z. A. Zhao, L. J. Li, C. H. Chen, M. H. Chiu, P. S. Chang, Y. C. Chou, and W. H. Chang, ACS Nano 8, 2951 (2014).
L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, Phys. Rev. B 87, 201401 (2014).
H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, Appl. Phys. Lett. 105, 201905 (2014).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
J. J. Dean and H. M. van Driel, Appl. Phys. Lett. 95, 261910 (2014).
H.-C. Kim, H. Kim, J.-U. Lee, H.-B. Lee, D.-H. Choi, J.-H. Lee, W. H. Lee, S.-H. Jhang, B. H. Park, H. Cheong, S.-W. Lee, and H.-J. Chung, ACS Nano 9, 6854 (2015).
W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2013).
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, Science 340, 1311 (2013).
A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, Nature Phot. 9, 466 (2015).
C. Ballif, M. Regula, and F. Levy, Solar Energy Materials and Solar Cells 57, 189 (1999).
A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).
S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, and J. Wang, ACS Nano 9, 7142 (2015).
R. A. Soref and B. R. Bennet, IEEE J. Quantum Electron. 23, 123 (1987).
D. Wickramaratne, F. Zahid, and R. K. Lake, J. Chem. Phys. 140, 124710 (2014).
R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).
B. R. Bennett, R. A. Soref, and J. A. Del Alamo, IEEE J. Quantum Electron. 26, 113 (1990).
G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, Photon. Res. 3, A51 (2015).
Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, and J. Zhao, Proc. Nat. Acad. Sci. USA 112, 11800 (2015).
S. D. Lavrov, A. V. Kudryavtsev, A. P. Shestakova, L. Kulyuk, and E. D. Mishina, Optics and Spectroscopy 120, 808 (2016).

Data & Media loading...


Article metrics loading...



The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG) field. The model is applied to the calculation of second harmonic (SH) field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering) in 2D semiconductors that is extremely important for characterization of these unique materials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd