Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962824
1.
M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 16, 405 (1987).
http://dx.doi.org/10.1246/cl.1987.405
2.
T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. Huang, T. Ishida, and M. Haruta, Adv. Catal. 55, 1 (2012).
3.
A. Corma and P. Serna, Science 313, 332 (2006).
http://dx.doi.org/10.1126/science.1128383
4.
T. Hayashi, K. Tanaka, and M. Haruta, J. Catal. 178, 566 (1998).
http://dx.doi.org/10.1006/jcat.1998.2157
5.
B. Chowdhury, J. J. Bravo-Suárez, N. Mimura, Jiqing, K. K. Bando, S. Tsubota, and M. Haruta, J. Phys. Chem. B 110, 22995 (2006).
http://dx.doi.org/10.1021/jp066008y
6.
Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, Science 301, 935 (2003).
http://dx.doi.org/10.1126/science.1085721
7.
M. Shekhar, J. Wang, W.-S. Lee, W. D. Williams, S. M. Kim, E. A. Stach, J. T. Miller, W. N. Delgass, and F. H. Ribeiro, J. Am. Chem. Soc. 134, 4700 (2012).
http://dx.doi.org/10.1021/ja210083d
8.
M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
http://dx.doi.org/10.1126/science.281.5383.1647
9.
I. Laoufi, M.-C. Saint-Lager, R. Lazzari, J. Jupille, O. Robach, S. Garaudée, G. Cabailh, P. Dolle, H. Cruguel, and A. Bailly, J. Phys. Chem. C 115, 4673 (2011).
http://dx.doi.org/10.1021/jp1110554
10.
A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, and G. J. Hutchings, Science 321, 1331 (2008).
http://dx.doi.org/10.1126/science.1159639
11.
H. An, S. Kwon, H. Ha, H. Y. Kim, and H. M. Lee, J. Phys. Chem. C 120, 9292 (2016).
http://dx.doi.org/10.1021/acs.jpcc.6b01774
12.
E. M. Fernándeza, P. Ordejónb, and L. C. Balbása, Chem. Phys. Lett. 408, 252 (2005).
13.
A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 103, 9573 (1999).
http://dx.doi.org/10.1021/jp9935992
14.
B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science 307, 403 (2005).
http://dx.doi.org/10.1126/science.1104168
15.
Y.-G. Wang, Y. Yoon, V.-A. Glezakou, J. Li, and R. Rousseau, J. Am. Chem. Soc. 135, 10673 (2013).
http://dx.doi.org/10.1021/ja402063v
16.
L. Li, Y. Gao, H. Li, Y. Zhao, Y. Pei, Z. Chen, and X. C. Zeng, J. Am. Chem. Soc. 135, 19336 (2013).
http://dx.doi.org/10.1021/ja410292s
17.
M. S. Chen and D. W. Goodman, Science 306, 252 (2004).
http://dx.doi.org/10.1126/science.1102420
18.
Z. Duan and G. Henkelman, ACS Catal. 5, 1589 (2015).
http://dx.doi.org/10.1021/cs501610a
19.
T. Engel and G. Etrl, Adv. Catal. 28, 1 (1979).
20.
M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, J. Catal. 144, 175 (1993).
http://dx.doi.org/10.1006/jcat.1993.1322
21.
F. Cosandey and T. E. Madey, Surf. Rev. Lett. 08, 73 (2001).
http://dx.doi.org/10.1142/S0218625X01000884
22.
L. M. Molina and B. Hammer, Phys. Rev. Lett. 90, 206102 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.206102
23.
N. Nikbin, G. Mpourmpakis, and D. G. Vlachos, J. Phys. Chem. C 115, 20192 (2011).
http://dx.doi.org/10.1021/jp206820t
24.
Z.-P. Liu, X.-Q. Gong, J. Kohanoff, C. Sanchez, and P. Hu, Phys. Rev. Lett. 91, 266102 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.266102
25.
M. Arenz, U. Landman, and U. Heiz, ChemPhysChem 7, 1871 (2006).
http://dx.doi.org/10.1002/cphc.200600029
26.
L. M. Molina and B. Hammer, Phys. Rev. B 69, 155424 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155424
27.
C. Liu, Y. Tan, S. Lin, H. Li, X. Wu, L. Li, Y. Pei, and X. C. Zeng, J. Am. Chem. Soc. 135, 2583 (2013).
http://dx.doi.org/10.1021/ja309460v
28.
M. Stamatakis, M. A. Christiansen, D. G. Vlachos, and G. Mpourmpakis, Nano Lett. 12, 3621 (2012).
http://dx.doi.org/10.1021/nl301318b
29.
D. Tang and C. Hu, J. Phys. Chem. Lett. 2, 2972 (2011).
http://dx.doi.org/10.1021/jz201290x
30.
F. Wang, D. Zhang, X. Xu, and Y. Ding, J. Phys. Chem. C 113, 18032 (2009).
http://dx.doi.org/10.1021/jp903392w
31.
Y. Gao, N. Shao, Y. Pei, Z. Chen, and X. C. Zeng, ACS Nano 5, 7818 (2011).
http://dx.doi.org/10.1021/nn201817b
32.
H. Li, L. Li, A. Pedersen, Y. Gao, N. Khetrapal, H. Jónsson, and X. C. Zeng, Nano Lett. 15, 682 (2015).
http://dx.doi.org/10.1021/nl504192u
33.
L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, and U. Landman, J. Am. Chem. Soc. 25, 10437 (2003).
http://dx.doi.org/10.1021/ja027926m
34.
V. Simic-Milosevic, M. Heyde, N. Nilius, T. König, H.-P. Rust, M. Sterrer, T. Risse, H.-J. Freund, L. Giordano, and G. Pacchioni, J. Am. Chem. Soc. 130, 7814 (2008).
http://dx.doi.org/10.1021/ja8024388
35.
V. Simic-Milosevic, M. Heyde, X. Lin, T. König, H.-P. Rust, M. Sterrer, T. Risse, N. Nilius, H.-J. Freund, L. Giordano, and G. Pacchioni, Phys. Rev. B 78, 235429 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235429
36.
M. Kulawik, N. Nilius, and H.-J. Freund, Phys. Rev. Lett. 96, 036103 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.036103
37.
N. Nilius, T. M. Wallis, and W. Ho, Science 297, 1853 (2002).
http://dx.doi.org/10.1126/science.1075242
38.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision E.05, Gaussian, Inc., Wallingford CT, 2006.
39.
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
40.
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
41.
B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
http://dx.doi.org/10.1016/0009-2614(89)87234-3
42.
P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).
http://dx.doi.org/10.1063/1.448799
43.
W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).
http://dx.doi.org/10.1063/1.448800
44.
P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
http://dx.doi.org/10.1063/1.448975
45.
J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980).
http://dx.doi.org/10.1021/ja00544a007
46.
A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).
http://dx.doi.org/10.1063/1.449486
47.
A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).
http://dx.doi.org/10.1021/cr00088a005
48.
S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
http://dx.doi.org/10.1080/00268977000101561
49.
K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys. 96, 3319 (1992).
http://dx.doi.org/10.1063/1.461927
50.
C. E. Moore, Atomic Energy Levels. Ed. Washington, DC, 1958.
51.
M. A. Cheeseman and J. R. Eyler, J. Phys. Chem. 96, 1082 (1992).
http://dx.doi.org/10.1021/j100182a013
52.
J. C. Rienstra-Kiracofe, G. S. Tschumper, and H. F. Schaefer III, Chem. ReV. 102, 231 (2002).
http://dx.doi.org/10.1021/cr990044u
53.
CRC Handbook of Chemistry and Physics, 55th ed. (CRC Press, Cleveland, OH, 1974).
54.
Q. Sun, P. Jena, Y. D. Kim, M. Fischer, and G. Ganteför, J. Chem. Phys. 120, 6510 (2004).
http://dx.doi.org/10.1063/1.1666009
55.
AIP Handbook, 3rd ed.; McGraw-Hill, New York, 1972.
56.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. Van Nostrand Reinhold, New York, 1979.
57.
C. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1995.
58.
J. P. Merrick, D. Moran, and L. Radom, J. Phys. Chem. A 111, 11683 (2007).
http://dx.doi.org/10.1021/jp073974n
59.
X. Ding, Z. Li, J. Yang, J. G. Hou, and Q. Zhu, J. Chem. Phys. 120, 9594 (2004).
http://dx.doi.org/10.1063/1.1665323
60.
D. Stolcic, M. Fischer, G. Ganteför, Y. D. Kim, Q. Sun, and P. Jena, J. Am. Chem. Soc. 125, 2848 (2003).
http://dx.doi.org/10.1021/ja0293406
61.
M.-S. Liao, J. D. Watts, and M.-J. Huang, J. Phys. Chem. C 118, 21911 (2014).
http://dx.doi.org/10.1021/jp501701f
62.
T. H. Lee, “Reactions and bond dissociation energies of bare and ligated copper group anions,” Ph.D. thesis, University of Nevada, Reno, 1995;
K. M. Ervin, personal communication.
63.
D. M. Cox, R. Brickman, K. Creegan, and A. Kaldor, Z. phys. D: At., Mol. Clusters 19, 353 (1991).
http://dx.doi.org/10.1007/BF01448327
64.
B. E. Salisbury, W. T. Wallace, and R. L. Whetten, Chem. Phys. 262, 131 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00272-X
65.
D. W. Yuan and Z. Zeng, J. Chem. Phys. 120, 6574 (2004).
http://dx.doi.org/10.1063/1.1667466
66.
H. Häkkinen and U. Landman, J. Am. Chem. Soc. 123, 9704 (2001).
http://dx.doi.org/10.1021/ja0165180
67.
X. Wu, L. Senapati, S. K. Nayak, A. Selloni, and M. Hajaligol, J. Chem. Phys. 117, 4010 (2002).
http://dx.doi.org/10.1063/1.1483067
68.
M. L. Kimble, N. A. Moore, G. E. Johnson, and A. W. Castleman, Jr., J. Chem. Phys. 125, 204311 (2006).
http://dx.doi.org/10.1063/1.2371002
69.
L. Jiang and Q. Xu, J. Phys. Chem. A 109, 1026 (2005).
http://dx.doi.org/10.1021/jp045681p
70.
W. T. Wallace and R. L. Whetten, J. Am. Chem. Soc. 124, 7499 (2002).
http://dx.doi.org/10.1021/ja0175439
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962824
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962824
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962824
2016-09-12
2016-09-27

Abstract

Density functional theory is used to study the effect of increase of the number of Au atom in the adsorption of CO and O as well as CO oxidation on anionic, neutral, and cationic Linear-shape Gold Molecules (LGM) (n=2, 4, 8, 16, and 24). The more the number of Au atom increases, the more the adsorption energies of CO lower and larger in the cationic and anionic LGMCO complexes, respectively. In contrast, the adsorption energies of both CO and O on neutral LGM exhibit approximately constant values. There are little differences of both adsorption energies and net charge of CO and O on the number of Au atom in LGM regardless of each charge state. This indicates that the charge state of LGM plays a less important role for the adsorption of CO and O with increase of the number of Au atom in LGM. The trend of the overall activation energies of reaction pathway is switched between and with increase of the number of Au atom in LGM, and OC-OO intermediate of the initial state in (n=8, 16, and 24) are unstable compared to the separated reactants (LGM, CO, O). These are caused by the values of charge of O2 of OC-OO intermediate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962824.html;jsessionid=yM27fSJB7TdCktFN7vDVXGBL.x-aip-live-03?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962824&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962824&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962824'
Right1,Right2,Right3,