Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962843
1.
H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis, IEEE Trans. Electron. Dev. 14, 11733 (1967).
http://dx.doi.org/10.1109/T-ED.1967.15912
2.
V. Intaraprasonk and S. Fan, Appl. Phys. Lett. 98, 241104 (2011).
http://dx.doi.org/10.1063/1.3600335
3.
F. K. Chowdhury, D. Saab, and M. Tabib-Azar, Sens. Actuators, A 188, 481 (2012).
http://dx.doi.org/10.1016/j.sna.2012.05.005
4.
X. M. H. Huang, M. Manolidis, S. C. Jun, and J. Hone, Appl. Phys. Lett. 86, 143104 (2005).
http://dx.doi.org/10.1063/1.1897445
5.
B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. G. Craighead, Nano Lett. 5, 9259 (2005).
http://dx.doi.org/10.1021/nl050456k
6.
D. R. Southworth, L. M. Bellan, Y. Linzon, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 96, 163503 (2010).
http://dx.doi.org/10.1063/1.3393999
7.
R. Harne and K. Wang, J. Sound Vib. 333, 2241 (2014).
http://dx.doi.org/10.1016/j.jsv.2013.12.017
8.
G. M. Rebeiz, RF MEMS: Theory Design and Technology (Wiley Interscience, Hoboken, NJ, 2003).
9.
B. Charlot, W. Sun, K. Yamashita, H. Fujita, and H. Toshiyoshi, J. Micromech. Microeng. 18, 045005 (2008).
http://dx.doi.org/10.1088/0960-1317/18/4/045005
10.
B. DeMartini, J. Rhoads, M. Zielke, K. Owen, S. Shaw, and K. Turner, Appl. Phys. Lett. 93, 054102 (2008).
http://dx.doi.org/10.1063/1.2964192
11.
V. Kumar, J. Boley, Y. Yang, H. Ekowaluyo, J. Miller, G. Chiu, and J. Rhoads, Appl. Phys. Lett. 98, 153510 (2011).
http://dx.doi.org/10.1063/1.3574920
12.
A. Bouchaala, N. Jaber, O. Shekhah, V. Chernikova, M. Eddaoudi, and M. Younis, Appl. Phys. Lett. 109(1), 013502 (2016).
http://dx.doi.org/10.1063/1.4955309
13.
M. I. Younis, MEMS Linear and Nonlinear Statics and Dynamics (Springer, 2011).
14.
R. Harne, M. Thota, and K. Wang, Appl. Phys. Lett. 102, 053903 (2013).
http://dx.doi.org/10.1063/1.4790381
15.
A. F. Arrieta, P. Hagedorn, A. Erturk, and D. J. Inman, Appl. Phys. Lett. 97, 104102 (2010).
http://dx.doi.org/10.1063/1.3487780
16.
C. Lan, W. Qin, and W. Deng, Appl. Phys. Lett. 107, 093902 (2015).
http://dx.doi.org/10.1063/1.4930073
17.
L. Medina, R. Gilat, B. R. Ilic, and S. Krylov, Appl. Phys. Lett. 108, 073503 (2016).
http://dx.doi.org/10.1063/1.4941731
18.
A. Ramini, M. L. F. Bellaredj, M. Al-Hafiz, and M. I. Younis, J. Micromech. and Microeng. 26(1), 015012 (2015).
http://dx.doi.org/10.1088/0960-1317/26/1/015012
19.
A. Ramini, Q. M. Hennawi, and M. I. Younis, J. Microelectromech. Syst. 25(3), 570578 (2016).
http://dx.doi.org/10.1109/JMEMS.2016.2554659
20.
K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, Nature 396(6707), 149152 (1998).
http://dx.doi.org/10.1038/24122
21.
S. Krylov, I. Harari, and Y. Cohen, J. Micromech. Microeng. 15, 1188204 (2005).
http://dx.doi.org/10.1088/0960-1317/15/6/009
22.
I. Mahboob and H. Yamaguchi, Nature Nanotechnology 3, 275279 (2008).
http://dx.doi.org/10.1038/nnano.2008.84
23.
W. Zhang and K. L. Turner, Sensors Actuators A 122, 2330 (2005).
http://dx.doi.org/10.1016/j.sna.2004.12.033
24.
M. V. Requa and K. L. Turner, Appl. Phys. Lett. 88, 263508 (2006).
http://dx.doi.org/10.1063/1.2216033
25.
D. Rugar and P. Grütter, Phys. Rev. Lett. 67, 699702 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.699
26.
D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 77, 15457 (2000).
http://dx.doi.org/10.1063/1.1308270
27.
I. Mahboob and H. Yamaguchi, Appl. Phys. Lett. 92, 173109 (2008).
http://dx.doi.org/10.1063/1.2903709
28.
I. Mahboob and H. Yamaguchi, Appl. Phys. Lett. 92, 253109 (2008).
http://dx.doi.org/10.1063/1.2949319
29.
J. F. Rhoads and S. W. Shaw, Appl. Phys. Lett. 96, 234101 (2010).
http://dx.doi.org/10.1063/1.3446851
30.
M. Napoli, R. Baskaran, K. L. Turner, and B. Bamieh, Proc. IEEE 16th Int. Ann. Conf. MEMS (MEMS’ 2003), 16972 (2003).
31.
W. Zhan, R. Baskaran, and K. Turner, Appl. Phys. Lett. 82, 130 (2003).
32.
Y. C. Hu, C. M. Chang, and S. C. Huang, Sensors Actuators A 112, 15561 (2004).
http://dx.doi.org/10.1016/j.sna.2003.12.012
33.
S. K. De and N. R. Aluru, Phys. Rev. Lett. 94, 204101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.204101
34.
R. D. Rowland, Am. J. Phys. 72, 75866 (2004).
http://dx.doi.org/10.1119/1.1645281
35.
A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley, NewYork: Wiley, 1979).
36.
S. Krylov, Y. Gerson, T. Nachmias, and U. Keren, J. Micromech. Microeng. 20, 015041 (2010).
http://dx.doi.org/10.1088/0960-1317/20/1/015041
37.
K. Aubin, M. Zalalutdinov, A. Tuncay, R. B. Reichenbach, R. H. Rand, A. T. Zehnder, J. Parpia, and H. G. Craighead, J. Microelectromech. Syst. 13, 101826 (2004).
http://dx.doi.org/10.1109/JMEMS.2004.838360
38.
M. Pandey, K. Aubin, M. Zalalutdinov, R. B. Reichenbach, A. T. Zehnder, R. H. Rand, and H. G. Craighead, J. Microelectromech. Syst. 15, 156454 (2006).
http://dx.doi.org/10.1109/JMEMS.2006.879693
39.
M. Zalalutdinov, A. Olkhovets, A. Zehnder, B. Ilic, D. Czaplewski, H. G. Craighead, and J. M. Parpia, Appl. Phys. Lett. 78, 31424 (2001).
http://dx.doi.org/10.1063/1.1371248
40.
41.
H. M. Ouakad and M. I. Younis, Int. J. of Non-Linear Mech. 45(7), 704713 (2010).
http://dx.doi.org/10.1016/j.ijnonlinmec.2010.04.005
42.
N. Kacem, S. Baguet, L. Duraffourg, G. Jourdan, R. Dufour, and S. Hentz, Appl. Phys. Lett. 107, 073105 (2015).
http://dx.doi.org/10.1063/1.4928711
43.
M. A. A. Hafiz, L. Kosuru, and M. I. Younis, Nature Commun. 7, 11137 (2016).
http://dx.doi.org/10.1038/ncomms11137
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962843
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962843
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962843
2016-09-12
2016-09-30

Abstract

We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962843.html;jsessionid=p3IRbl-2jKZSvce0bdJemhpe.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962843&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962843&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962843'
Right1,Right2,Right3,