Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962921
1.
C. A. Spindt, C. E. Holland, P. R. Schwoebel, and I. Brodie, J. Vac. Sci. Technol., B 16, 758 (1998).
http://dx.doi.org/10.1116/1.589898
2.
Q. H. Wang, M. Yan, and R. P. H. Chang, Appl. Phys. Lett. 78, 1294 (2001).
http://dx.doi.org/10.1063/1.1351847
3.
G. Cao et al., Phys. Med. Biol. 54, 2323 (2009).
http://dx.doi.org/10.1088/0031-9155/54/8/005
4.
X. Calderon-Colon, H. Geng, B. Gao, L. An, G. Cao, and O. Zhou, Nanotechnology 20, 325707 (2009).
5.
D. R. Whaley, B. M. Gannon, C. R. Smith, C. M. Armstrong, and C. A. Spindt, IEEE Trans. Plasma Sci. 28, 727 (2002).
6.
K. L. Jensen, Phys. Plasmas 6, 2241 (1999).
http://dx.doi.org/10.1063/1.873502
7.
C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, IEEE Trans. Electron Devices 36, 225 (1989).
http://dx.doi.org/10.1109/16.21210
8.
V. Semet et al., Appl. Phys. Lett. 81, 323 (2002).
http://dx.doi.org/10.1063/1.1489084
9.
N. Davydov, P. A. Sattari, D. Al. Mawlawi, A. Osika, T. L. Haslett, and M. Moskovits, J. Appl. Phys. 86, 39983 (1999).
10.
H. Gao et al., J. Appl. Phys. 93, 5602 (2003).
http://dx.doi.org/10.1063/1.1564882
11.
L. Nilsson, O. Groning, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapback, H. Kind, J. M. BOnard, and K. Kern, Appl. Phys. Lett. 76, 2071 (2000).
http://dx.doi.org/10.1063/1.126258
12.
J. S. Suh, K. S. Jeong, J. S. lee, and I. Han, Appl. Phys. Lett. 80, 2392 (2002).
http://dx.doi.org/10.1063/1.1465109
13.
W. Tang, D. Shiffler, and K. l. Cartwright, J. Appl. Phys. 110, 034905 (2011).
http://dx.doi.org/10.1063/1.3615846
14.
W. Tang, K. Golby, M. LaCour, T. Knowles, and D. Shiffler, J. Vac. Sci. Technol. B 30, 061803 (2012).
http://dx.doi.org/10.1116/1.4759254
15.
W. Tang, K. Golby, M. LaCour, and T. Knowles, IEEE Trans. Plasma Sci. 42, 100 (2014).
16.
W. Tang, D. Shiffler, K. GOlby, M. LaCour, and T. Knowles, J. Vac. Sci. Technol. B 32(5), 052202 (2014).
http://dx.doi.org/10.1116/1.4891928
17.
J. R. Harris, K. L. Jensen, and D. Shiffler, AIP Advances 5, 087182 (2015).
http://dx.doi.org/10.1063/1.4929983
18.
J. R. Harris, K. L. Jensen, W. Tang, and D. A. Shiffler, J. Vac. Sci. Technol. B 34, 041215 (2016).
http://dx.doi.org/10.1116/1.4953076
19.
J. R. Harris, K. L. Jensen, and D. Shiffler, J. Appl. Phys. 119, 043301(2016).
http://dx.doi.org/10.1063/1.4940410
20.
D. Shiffler, S. Fairchild, W. tang, B. Maruyama, K. GOlby, M. LaCour, M. Pasquali, and N. Lockwood, IEEE Trans. Plasma Sci. 40, 1871 (2012).
http://dx.doi.org/10.1109/TPS.2012.2195328
21.
R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Serv. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
22.
C. Liu, Y. Tong, H. M. Cheng, D. Golbery, and Y. Bando, Appl. Phys. Lett. 86, 223114 (2005).
http://dx.doi.org/10.1063/1.1944229
23.
J. M. Houston, Phys. Rev. 88(2), 349 (1952).
http://dx.doi.org/10.1103/PhysRev.88.349
24.
R. G. Forbes, J. Vac. Sci. Technol. B 17(2), 534 (1999).
http://dx.doi.org/10.1116/1.590589
25.
R. G. Forbes, Ultramicroscopy 7, 1123 (1999).
http://dx.doi.org/10.1016/S0304-3991(99)00097-2
26.
J. M. Bonard et al., Phys. Rev. Letts 89, 197602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.197602
27.
H. J. Kim et al., Nanotechnology 22, 095602 (2011).
28.
S. H. Jo et al., J. Vac. Sci. Technol. B 23(6), 23622368 (2005).
29.
R. Miller, Y. Y. Lau, and J. H. Booske, Appl. Phys. Letts 91, 074105 (2007).
http://dx.doi.org/10.1063/1.2771375
30.
D. A. Shiffler et al., J. Appl. Phys. 118, 083302 (2015).
http://dx.doi.org/10.1063/1.4929364
31.
K. L. Jensen et al., J. Appl. Phys. 117, 194902 (2015).
http://dx.doi.org/10.1063/1.4921186
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962921
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962921
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962921
2016-09-12
2016-09-29

Abstract

This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962921.html;jsessionid=4SN2hwQrzCazZGMBiF32rdGp.x-aip-live-06?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962921&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962921'
Right1,Right2,Right3,