Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962922
1.
U. Leonhardt, Science 312, 1777 (2006).
http://dx.doi.org/10.1126/science.1126493
2.
A. Alù and N. Engheta, Phys. Rev. Lett. 100, 113901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.113901
3.
J. Andkjaer and O. Sigmund, Appl. Phys. Lett. 98, 021112 (2011).
http://dx.doi.org/10.1063/1.3540687
4.
J. Andkjaer, N. A. Mortensen, and O. Sigmund, Appl. Phys. Lett. 100, 101106 (2012).
http://dx.doi.org/10.1063/1.3691835
5.
J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
http://dx.doi.org/10.1126/science.1125907
6.
D. H. Kwon and D. H. Werner, Appl. Phys. Lett. 92, 113502 (2008).
http://dx.doi.org/10.1063/1.2898205
7.
N. Landy and D. R. Smith, Nature Mater. 12, 25 (2013).
http://dx.doi.org/10.1038/nmat3476
8.
F. Gömöry, M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, Science 335, 1466 (2012).
9.
H. Chen and C. T. Chan, Appl. Phys. Lett. 91, 183518 (2007).
http://dx.doi.org/10.1063/1.2803315
10.
Q. Li and J. S. Vipperman, Appl. Phys. Lett. 105, 101906 (2014).
http://dx.doi.org/10.1063/1.4895765
11.
S. A. Cummer, J. Christensen, and A. Alù, Nature. Rev. Mater. 1, 16001 (2016).
http://dx.doi.org/10.1038/natrevmats.2016.1
12.
T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, Nature Communications 5, 4130 (2014).
http://dx.doi.org/10.1038/ncomms5130
13.
M. Kadic, T. Bückmann, R. Schittny, P. Gumbsch, and M. Wegener, Phys. Rev. Appl. 2, 054007 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.054007
14.
C. Z. Fan, Y. Gao, and J. Huang, Appl. Phys. Lett. 92, 251907 (2008).
http://dx.doi.org/10.1063/1.2951600
15.
R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Phys. Rev. Lett. 110, 195901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.195901
16.
J. Y. Li, Y. Gao, and J. P. Huang, J. Appl. Phys. 108, 074504 (2010).
http://dx.doi.org/10.1063/1.3490226
17.
S. Guenneau and C. Amra, Opt. Express. 21, 6578 (2013).
http://dx.doi.org/10.1364/OE.21.006578
18.
S. Narayana and Y. Sato, Phys. Rev. Lett. 108, 214303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.214303
19.
S. Narayana, S. Savo, and Y. Sato, Appl. Phys. Lett. 102, 201904 (2013).
http://dx.doi.org/10.1063/1.4807744
20.
Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, NPG Asia Materials 5, e73 (2013).
http://dx.doi.org/10.1038/am.2013.60
21.
L. Wu, J. Heat Trans. 137, 021301 (2015).
http://dx.doi.org/10.1115/1.4028920
22.
K. P. Vemuri and P. R. Bandaru, Appl. Phys. Lett. 103, 133111 (2013).
http://dx.doi.org/10.1063/1.4823455
23.
T. Yang, K. P. Vemuri, and P. R. Bandaru, Appl. Phys. Lett. 105, 083908 (2014).
http://dx.doi.org/10.1063/1.4894387
24.
F. M. Canbazoglu, K. P. Vemuri, and P. R. Bandaru, Appl. Phys. Lett. 106, 143904 (2015).
http://dx.doi.org/10.1063/1.4917344
25.
H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Phys. Rev. Lett. 112, 054301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.054301
26.
T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Phys. Rev. Lett. 112, 054302 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.054302
27.
T. Han, T. Yuan, B. Li, and C. W. Qiu, Sci. Rep. 3, 132 (2013).
http://dx.doi.org/10.1038/srep01593
28.
T. Chen, C. N. Weng, and Y. L. Tsai, J. Appl. Phys. 117, 054904 (2015).
http://dx.doi.org/10.1063/1.4907219
29.
S. E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991).
http://dx.doi.org/10.1063/1.1142087
30.
Y. Jin and H. Herwig, Int. J Heat. Mass. Tran. 70, 10 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.10.063
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962922
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962922
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962922
2016-09-13
2016-09-25

Abstract

In this paper, we design a 3D spherical thermal cloak with eight material layers based on transformation thermodynamics and it worked at steady state before approaching ‘static limit’. Different from the present research, we introduce local entropy generation to present the randomness in the cloaking system and propose the concept of a heat dissipation coefficient which is used to describe the capacity of heat diffusion in the ‘cloaking’ and ‘protected’ region to characterize the cloaking performance on the basis of non-equilibrium thermodynamics. We indicate the ability of heat dissipation for the thermal cloak responds to changes in anisotropy (caused by the change in the number of layers) and differential temperatures. In addition, we obtain a comparison of results of different cloaks and believe that the concept of a heat dissipation coefficient can be an evaluation criterion for the thermal cloak.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962922.html;jsessionid=tZzSisJRk-QF6wz5Da2YCAyo.x-aip-live-03?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962922&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962922&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962922'
Right1,Right2,Right3,