Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. B. Zhao, S. V. B. J. Garikipati, X. D. Hu, M. D. Argyle, and M. Radosz, AIChE J. 51, 1813 (2005).
X. Hu, J. Zhang, S. Mukhnahallipatna, J. Hamann, M. J. Biggs, and P. Agarwal, Fuel 82, 1675 (2003).
H. Lin, Experimental and theoretical study on flue gas denitrification with radical shower by DC corona discharge (Doctoral Dissertation, Zhejiang University, 2002) p.35.
A. G. Chmielewski, Y. X. Sun, J. Licki, A. Pawelec, S. Witman, and Z. Zimek, Radiat. Phys. Chem. 81, 1036 (2012).
C. L. Yang and L. K. Chen, J. Hazard. Mater. 80, 135 (2000).
B. M. Obradović, G. B. Sretenović, and M. M. Kuraica, J. Hazard. Mater. 185, 1280 (2010).
M. A. Malik, J. F. Kolb, Y. H. Sun, and K. H. Schoenbach, J. Hazard. Mater. 197, 220 (2011).
X. Shen, X. Gao, Z. S. Li, B. Li, C. H. Zheng, Z. W. Sun, M. J. Ni, K. F. Cen, and M. Aldén, Fuel 102, 729 (2012).
X. B. Zhu, C. H. Zheng, X. Gao, X. Shen, Z. H. Wang, Z. Y. Luo, and K. F. Cen, J. Environ. Sci-China 26, 2249 (2014).
G. B. Zhao, S. V. B. J. Garikipati, X. D. Hu, M. D. Argyle, and M. Radosz, AIChE J. 51, 1800 (2005).
R. T. Sanderson. Chemical bonds and bond energy, (Academic Press Inc., New York, 1976), p. A561.
S. Kanazawa, J. S. Chang, G. F. Round, G. Sheng, T. Ohkubo, and Y. Nomoto, J. Electrostat. s40–41, 651 (1997).
K. Onda, H. Kusunoki, K. Ito, and H. Ibaraki, J. Appl. Phys. 95, 3928 (2004).
J. Y. Park, I. Tomicic, G. F. Round, and J. S. Chang, J. Phys. D Appl. Phys. 32, 1006 (1999).
J. B. Lee and S. D. Kim, Chem. Eng. J. 69, 99 (1998).
L. Hong, L. J. Yin, D. Z. Chen, and D. Wang, AIChE J. 61, 904 (2015).
H. Mätzing. Adv. Chem. Phys. 80, 315 (2007).
A. Mizuno, K. Shimizu, A. Chakrabarti, L. Dascalescu, and S. Furuta, IEEE T. Ind. Appl. 31, 957 (1995).
G. Sathiamoorthy, S. Kalyana, W. C. Finney, R. J. Clark, and B. R. Locke, Ind. Eng. Chem. Res. 38, 1844 (1999).
H. Lin, X. Gao, Z. Y. Luo, K. F. Cen, and Z. Huang, Fuel 83, 1349 (2004).
Y. S. Mok and I. S. Nam, Chem. Eng. J. 85, 87 (2002).
Y. S. Mok and S. W. Ham, Chem. Eng. Sci. 53, 1667 (1998).
R. Y. Wang, B. A. Zhang, B. Sun, N. H. Wang, Y. Wu, W. M. Gong, and S. H. Liu, J. Electrostat. 34, 355 (1995).
J. J. Lowke and R. Morrow, IEEE T. Plasma Sci. 23, 661 (1995).
W. Sun, B. Pashaie, S. K. Dhali, and H. I. Honea, J. Appl. Phys. 79, 3438 (1996).
J. S. Chang, P. A. Lawless, and T. Yamamoto, IEEE T. Plasma Sci. 19, 1152 (1991).
J. Li, W. Sun, B. Pashaie, and S. K. Dhali, IEEE T. Plasma Sci. 23, 672 (1995).
J. A. Miller and C. T. Bowman, Prog. Energ. Combust. 15, 287 (1989).
P. Glarborg, J. A. Miller, and R. J. Kee, Combust. Flame 65, 177 (1986).
A. A. Konnov and J. De Ruyck, Combust. Flame 124, 106 (2001).
C. H. Shen, The Analysis of Thermal Dissociation of Hydrazine, (Doctoral Dissertation, National Cheng Kung University, 2004) p.79.
E. W. Diau, T. Yu, M. A. G. Wagner, and M. C. Lin, J. Phys. Chem. 98, 4034 (1994).
T. Ombrello, S. H. Won, Y. G. Ju, and S. Williams, Combust. Flame 157, 1906 (2010).
Z. H. Wang, L. Yang, B. Li, Z. S. Li, Z. W. Sun, M. Aldén, K. F. Cen, and A. A. Konnov, Combust. Flame 159, 120 (2012).
M. H. Xu, Y. Qiao, C. G. Zheng, L. C. Li, and J. Liu, Combust. Flame 132, 208 (2003).
R. Atkinson, D. L. Baulch, R. A. Cox, Jr. R. F. Hampson, J. A. Kerr, M. J. Rossi, and J. Troe, J. Phys. Chem. Ref. Data 26, 1329 (1997).
R. J. Kee, F. M. Rupley, K. Meeks, and J. A. Miller, CHEMKIN - III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetic, (Sandia Laborotaries Report SAND96-8216, 1996).
Y. Yankelevich, M. Wolf, R. Baksht, A. Pokryvailo, J. Vinogradov, B. Rivin, and E. Sher, Plasma Sources Sci. T. 16, 386 (2007).
O. Eichwald, M. Yousfi, A. Hennad, and M. D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997).
H. Miessner, K. P. Francke, R. Rudolph, and T. Hammer, Catal. Today 75, 325 (2002).

Data & Media loading...


Article metrics loading...



The NO conversion efficiency in a pulsed corona discharge plasma (PCDP) reactor in the presence of a new additive, hydrazine hydrate (NH·HO), was studied, and the reaction mechanism was analyzed. The NO conversion efficiency reached 62.5%, and the NO conversion Energy Yield ( ) reached 20.9 g/kWh, which is higher than that obtained using water or ammonia additives under the same conditions. The predominant elementary reactions and radicals, as well as the mechanism by which the additive enhanced the NO conversion process, were determined by comparing experimental data with theoretical simulation results and by performing a sensitivity analysis. After the addition of NH·HO, the NH reacts with radicals generated in the PCDP reactor to form a large quantity of strongly reducing species with NH as the predominant component, which can directly reduce NO to N and effectively prevent the generation of NO. Compared with the traditional PCDP-based De-NO process in which nitric acid is generated by oxidation with an additional neutralization step required, this new PCDP-based De-NO process with NH·HO addition is superior because NO is mostly reduced to N. The study provides a basis for the application of NH·HO as a synergist to improve NO abatement in a PCDP reactor.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd