Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962969
1.
A. Vallett, S. Minassian, P. Kaszuba, S. Datta, J. Redwing, and T. Mayer, Nano Let. 10, 4813 (2010).
http://dx.doi.org/10.1021/nl102239q
2.
A. M. Ionescu and H. Riel, Nature 479, 329 (2011).
http://dx.doi.org/10.1038/nature10679
3.
Y. Zhu, N. Jain, D. K. Mohata, S. Datta, D. Lubyshev, J. M. Fastenau, A. K. Liu, and M. K. Hudait, J. Appl. Phys. 113, 0243191 (2013).
http://dx.doi.org/10.1063/1.4775606
4.
M. Gholizadeh and S. E. Hosseini, IEEE Trans. Electron Devices 61, 1494 (2014).
http://dx.doi.org/10.1109/TED.2014.2313037
5.
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
6.
K. Ganapathi, Y. Yoon, and S. Salahuddin, Appl. Phys. Lett. 97, 0335041 (2010).
http://dx.doi.org/10.1063/1.3466908
7.
S. Marjani, S. E. Hosseini, and R. Faez, J. Comput. Electron. in press.
8.
A. Revelant, A. Villalon, Y. Wu, A. Zaslavsky, C. L. Royer, H. Iwai, and S. Cristoloveanu, IEEE Trans. Electron Devices 61, 2674 (2014).
http://dx.doi.org/10.1109/TED.2014.2329551
9.
S. Marjani and S. E. Hosseini, Superlattices and Microstructures 76, 297 (2014).
http://dx.doi.org/10.1016/j.spmi.2014.09.040
10.
S. E. Hosseini and M. Kamali Moghaddam, Mater. Sci. Semicond. Process. 30, 56 (2015).
http://dx.doi.org/10.1016/j.mssp.2014.09.036
11.
M. H. Lee, J.-C. Lin, Y.-T. Wei, C.-W. Chen, W.-H. Tu, H.-K. Zhuang, and M. Tang, in Proceedings of the IEEE International Electron Devices Meeting (IEDM), 2013, p. 4.5.1.
12.
M. H. Lee, Y.-T. Wei, J.-C. Lin, C.-W. Chen, W.-H. Tu, and M. Tang, AIP Advances 4, 1071171 (2014).
http://dx.doi.org/10.1063/1.4898150
13.
M. Kumar and S. Jit, IEEE Trans. Nanotechnol. 14, 597 (2015).
http://dx.doi.org/10.1109/TNANO.2015.2426316
14.
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 0516061 (2006).
http://dx.doi.org/10.1063/1.2336999
15.
J. Hutchby and M. Garner, in Workshop and ERD/ERM Working Group Meeting, www.itrs.net, 2010, p. 1.
16.
T. S. Boscke, Ph.D. dissertation, Technische Universität Hamburg-Harburg, 2010.
17.
T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, Appl. Phys. Lett. 99, 1029031 (2011).
http://dx.doi.org/10.1063/1.3634052
18.
J. Muller, T. S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, T. Mikolajick, and L. Frey, Appl. Phys. Lett. 99, 1129011 (2011).
http://dx.doi.org/10.1063/1.3636417
19.
E. Yurchuk, J. Muller, J. Paul, T. Schlosser, D. Martin, R. Hoffmann, S. Mueller, S. Slesazeck, U. Schroeder, R. Boschke, R. V. Bentum, and T. Mikolajick, IEEE Trans. Electron Devices 99, 3699 (2014).
http://dx.doi.org/10.1109/TED.2014.2354833
20.
M. Kobayashia and T. Hiramoto, AIP Advances 6, 0251131 (2016).
http://dx.doi.org/10.1063/1.4942427
21.
E. Yurchuk, J. Muller, S. Knebel, J. Sundqvist, A. P. Graham, T. Melde, U. Schroder, and T. Mikolajick, Thin Solid Films 533, 88 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.11.125
22.
R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics (Addison-Wesley: Reading, MA, USA, 1964).
23.
S. Salahuddin and S. Datta, Nano Lett. 8, 405 (2007).
http://dx.doi.org/10.1021/nl071804g
24.
S. Marjani and S. E. Hosseini, J. Appl. Phys. 118, 0957081 (2015).
http://dx.doi.org/10.1063/1.4929361
25.
M. Baklanov, K. Maex and M. Green, Dielectric Films for Advanced Microelectronics; (John Wiley & Sons, NJ, USA, 2007) p. 438.
26.
Q. Lu, R. Lin, P. Ranade, Y. C. Yeo, X. Meng, H. Takeuchi, T.-J. King, C. Hu, H. Luan, S. Lee, W. Bai, C.-H. Lee, D.-L. Kwong, X. Guo, X. Wang, and T.-P. Ma, in Proceedings of the IEEE International Electron Devices Meeting (IEDM), 2000, p. 641.
27.
G. He and Z. Sun, High-k Gate Dielectrics for CMOS Technology; (John Wiley & Sons, NJ, USA, 2012) p.175176.
28.
J. Yuan, C. Gruensfelder, K. Y. Lim, T. Wallner, M. K. Jung, M. J. Sherony, Y. M. Lee, J. Chen, C. W. Lai, and Y. T. Chow, in Proceedings of the IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010, p. 66.
29.
ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA, 2012.
30.
N. Cui, R. Liang, and J. Xu, Appl. Phys. Lett. 98, 1421051 (2011).
http://dx.doi.org/10.1063/1.3574363
31.
K. Ohashi, M. Fujimatsu, S. Iwata, and Y. Miyamoto, Jpn. J. Appl. Phys. 54, 04DF10-1 (2015).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962969
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962969
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962969
2016-09-13
2016-09-30

Abstract

In this paper, a silicon–on–insulator (SOI) p–n–p–n tunneling field–effect transistor (TFET) with a silicon doped hafnium oxide (Si:HfO) ferroelectric gate stack is proposed and investigated via 2D device simulation with a calibrated nonlocal band–to–band tunneling model. Utilization of Si:HfO instead of conventional perovskite ferroelectrics such as lead zirconium titanate (PbZrTiO) and strontium bismuth tantalate (SrBiTaO) provides compatibility to the CMOS process as well as improved device scalability. By using Si:HfO ferroelectric gate stack, the applied gate voltage is effectively amplified that causes increased electric field at the tunneling junction and reduced tunneling barrier width. Compared with the conventional p–n–p–n SOI TFET, the on–state current and switching state current ratio are appreciably increased; and the average subthreshold slope () is effectively reduced. The simulation results of Si:HfO ferroelectric p–n–p–n SOI TFET show significant improvement in transconductance (9.8X enhancement) at high overdrive voltage and average subthreshold slope (35% enhancement over nine decades of drain current) at room temperature, indicating that this device is a promising candidate to strengthen the performance of p–n–p–n and conventional TFET for a switching performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962969.html;jsessionid=-nv0Jp4SfIOCg8RUorQr4JZH.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962969&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962969&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962969'
Right1,Right2,Right3,