Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962991
1.
G. Shirane and A. Takeda, J. Phys. Soc. Jpn. 7, 5 (1952).
http://dx.doi.org/10.1143/JPSJ.7.5
2.
G. Shirane and K. Suzuki, J. Phys. Soc. Jpn. 7, 333 (1952).
http://dx.doi.org/10.1143/JPSJ.7.333
3.
S. Roberts, J. Am. Ceram. Soc. 33, 63 (1950).
http://dx.doi.org/10.1111/j.1151-2916.1950.tb14168.x
4.
G. Shirane, E. Savaguchi, and Y. Takagi, Phys. Rev. 84, 476 (1951).
http://dx.doi.org/10.1103/PhysRev.84.476
5.
G. Helke and K. Lubitz, “Piezoelectric PZT Ceramics,” in Piezoelectricity: Evolution and Future of a Technology, edited by W. Heywang, K. Lubitz, and W. Wersing (Springer Series in Materials Science, 2008), Vol. 114, pp. 89130.
6.
X. Hao, J. Zhai, L. B. Kong, and Z. Xu, Progr. Mater. Sci. 63, 1 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2014.01.002
7.
A. Chauhan, S. Patel, R. Vaish, and C. R. Bowen, Materials 8, 8009 (2015).
http://dx.doi.org/10.3390/ma8125439
8.
V. Tennery, J. Amer. Ceram. Soc. 49, 483 (1966).
http://dx.doi.org/10.1111/j.1151-2916.1966.tb13304.x
9.
N. G. Leont’ev, V. G. Smotrakov, and E. G. Fesenko, Izv. Akad. Nauk SSSR Neorg. Mater. 18, 449 (1982).
10.
O. E. Fesenko, V. G. Smotrakov, and N. G. Leontiev, Ferroelectrics 63, 189 (1985).
http://dx.doi.org/10.1080/00150198508221400
11.
C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 701 (1969);
http://dx.doi.org/10.1016/0038-1098(69)90597-3
C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 865 (1969).
http://dx.doi.org/10.1016/0038-1098(69)90429-3
12.
F. Cordero, F. Craciun, F. Trequattrini, C. Galassi, P. A. Thomas, D. S. Keeble, and A. M. Glazer, Phys. Rev. B 88, 094107 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.094107
13.
H. Yokota, N. Zhang, P. A. Thomas, and A. M. Glazer, Ferroelectrics 414, 147 (2011).
http://dx.doi.org/10.1080/00150193.2011.577330
14.
H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, Appl. Phys. Lett. 80, 459 (2002).
http://dx.doi.org/10.1063/1.1455145
15.
J. Ricote, R. W. Whatmore, and D. J. Barber, J. Phys.: Cond. Mat. 12, 323 (2000).
http://dx.doi.org/10.1088/0953-8984/12/3/311
16.
T. Asada and Y. Koyama, Phys. Rev. B 70, 104105 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.104105
17.
D. I. Woodward, J. Knudsen, and I. Reaney, Phys. Rev. B 72, 104110 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.104110
18.
L. M. Eng, H.-J. Güntherodt, G. A. Schneider, U. Köpke, and J. M. Saldaña, Appl. Phys. Lett. 74, 233 (1999).
http://dx.doi.org/10.1063/1.123266
19.
B. J. Rodriguez, A. Gruverman, A. I. Kingon, R. J. Nemanich, and J. S. Cross, J. Appl. Phys. 95, 1958 (2004).
http://dx.doi.org/10.1063/1.1638889
20.
I. K. Bdikin, J. A. Pérez, I. Coondoo, A. M. R. Senos, P. Q. Mantas, and A. L. Kholkin, J. Appl. Phys. 110, 052003 (2011).
http://dx.doi.org/10.1063/1.3623768
21.
S. K. Streiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster, and G. R. Bai, J. Appl. Phys. 83, 2742 (1998).
http://dx.doi.org/10.1063/1.366632
22.
M. B. Kelman, P. C. McIntyre, A. Gruverman, B. C. Hendrix, S. M. Bilodeau, and J. F. Roeder, J. Appl. Phys. 94, 5210 (2003).
http://dx.doi.org/10.1063/1.1610773
23.
A. Wu, P. M. Vilarinho, V. V. Shvartsman, G. Suchaneck, and A. L. Kholkin, Nanotechnology 16, 2587 (2005).
http://dx.doi.org/10.1088/0957-4484/16/11/020
24.
R. Gysel, A. K. Tagantsev, I. Stolichnov, N. Setter, and M. Pavius, Appl. Phys. Lett 89, 082906 (2006).
http://dx.doi.org/10.1063/1.2338432
25.
Y. Ivry, D. Chu, J. F. Scott, E. K. H. Salje, and C. Durkan, Nano Lett. 11, 4619 (2011).
http://dx.doi.org/10.1021/nl202097y
26.
D. M. Marincel, H. R. Zhang, J. Britson, A. Belianinov, S. Jesse, S. V. Kalinin, L. Q. Chen, W. M. Rainforth, I. M. Reaney, C. A. Randall, and S. Trolier-McKinstry, Phys. Rev. B. 91, 134113 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.134113
27.
D. Viehland, Phys. Rev. B 52, 778 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.778
28.
S. Watanabe and Y. Koyama, Phys. Rev. B 66, 134102 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134102
29.
J. Ricote, D. L. Corker, R. W. Whatmore, S. A. Impey, A. M. Glazer, J. Dec, and K. Roleder, J. Phys.: Condens. Matter 10, 1767 (1998).
http://dx.doi.org/10.1088/0953-8984/10/8/011
30.
H. Amorín, V. V. Shvartsman, I. K. Bdikin, M. E. V. Costa, A. L. Kholkin, and N. A. Pertsev, Appl. Phys. Lett. 88, 062903 (2006).
http://dx.doi.org/10.1063/1.2162704
31.
K. L. Kim, N. T. Tsou, and J. E. Huber, J. Appl. Phys. 113, 194104 (2013).
http://dx.doi.org/10.1063/1.4804955
32.
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977), pp. 680.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962991
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962991
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962991
2016-09-14
2016-10-01

Abstract

Pb(ZrTi)O single crystal with a low titanium content ( = 4%) was studied by the piezoresponse force microscopy (PFM) and X-ray diffraction (XRD). The XRD studies showed that the crystal faces are orthogonal to the principal cubic axes and confirmed the existence of an intermediate phase between the high-temperature paraelectric (PE) phase and the low-temperature antiferroelectric (AFE) one. A significant temperature hysteresis of phase transitions was observed by the XRD: On heating, the AFE state transforms into the intermediate one at about 373 K and the PE phase appears at 508 K, whereas on cooling the intermediate phase forms at 503 K and persists down to at least 313 K. The PFM investigation was focused on the intermediate phase and involved measurements of both out-of-plane and in-plane electromechanical responses of the (001)-oriented crystal face. The PFM images revealed the presence of polarization patterns switchable by an applied electric field, which confirms the ferroelectric character of the intermediate phase. Importantly, two types of regular domain structures were found, which differ by the spatial orientation of domain walls. The reconstruction of polarization configurations in the observed domain structures showed that one of them is a purely ferroelectric 180° structure with domain walls orthogonal to the crystal surface and parallel to one of the ⟨111⟩ pseudocubic directions. Another one is a ferroelectric-ferroelastic domain structure with the 71° walls parallel to the {101} or {011} crystallographic planes. Remarkably, this domain structure shows correlated out-of-plane and in-plane polarization reorientations after the poling with the aid of the microscope tip.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962991.html;jsessionid=m3Sy8zpWmyPlXU_i3sc1aDBk.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962991&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962991&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962991'
Right1,Right2,Right3,