Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. Shirane and A. Takeda, J. Phys. Soc. Jpn. 7, 5 (1952).
G. Shirane and K. Suzuki, J. Phys. Soc. Jpn. 7, 333 (1952).
S. Roberts, J. Am. Ceram. Soc. 33, 63 (1950).
G. Shirane, E. Savaguchi, and Y. Takagi, Phys. Rev. 84, 476 (1951).
G. Helke and K. Lubitz, “Piezoelectric PZT Ceramics,” in Piezoelectricity: Evolution and Future of a Technology, edited by W. Heywang, K. Lubitz, and W. Wersing (Springer Series in Materials Science, 2008), Vol. 114, pp. 89130.
X. Hao, J. Zhai, L. B. Kong, and Z. Xu, Progr. Mater. Sci. 63, 1 (2014).
A. Chauhan, S. Patel, R. Vaish, and C. R. Bowen, Materials 8, 8009 (2015).
V. Tennery, J. Amer. Ceram. Soc. 49, 483 (1966).
N. G. Leont’ev, V. G. Smotrakov, and E. G. Fesenko, Izv. Akad. Nauk SSSR Neorg. Mater. 18, 449 (1982).
O. E. Fesenko, V. G. Smotrakov, and N. G. Leontiev, Ferroelectrics 63, 189 (1985).
C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 701 (1969);
C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 865 (1969).
F. Cordero, F. Craciun, F. Trequattrini, C. Galassi, P. A. Thomas, D. S. Keeble, and A. M. Glazer, Phys. Rev. B 88, 094107 (2013).
H. Yokota, N. Zhang, P. A. Thomas, and A. M. Glazer, Ferroelectrics 414, 147 (2011).
H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, Appl. Phys. Lett. 80, 459 (2002).
J. Ricote, R. W. Whatmore, and D. J. Barber, J. Phys.: Cond. Mat. 12, 323 (2000).
T. Asada and Y. Koyama, Phys. Rev. B 70, 104105 (2004).
D. I. Woodward, J. Knudsen, and I. Reaney, Phys. Rev. B 72, 104110 (2005).
L. M. Eng, H.-J. Güntherodt, G. A. Schneider, U. Köpke, and J. M. Saldaña, Appl. Phys. Lett. 74, 233 (1999).
B. J. Rodriguez, A. Gruverman, A. I. Kingon, R. J. Nemanich, and J. S. Cross, J. Appl. Phys. 95, 1958 (2004).
I. K. Bdikin, J. A. Pérez, I. Coondoo, A. M. R. Senos, P. Q. Mantas, and A. L. Kholkin, J. Appl. Phys. 110, 052003 (2011).
S. K. Streiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster, and G. R. Bai, J. Appl. Phys. 83, 2742 (1998).
M. B. Kelman, P. C. McIntyre, A. Gruverman, B. C. Hendrix, S. M. Bilodeau, and J. F. Roeder, J. Appl. Phys. 94, 5210 (2003).
A. Wu, P. M. Vilarinho, V. V. Shvartsman, G. Suchaneck, and A. L. Kholkin, Nanotechnology 16, 2587 (2005).
R. Gysel, A. K. Tagantsev, I. Stolichnov, N. Setter, and M. Pavius, Appl. Phys. Lett 89, 082906 (2006).
Y. Ivry, D. Chu, J. F. Scott, E. K. H. Salje, and C. Durkan, Nano Lett. 11, 4619 (2011).
D. M. Marincel, H. R. Zhang, J. Britson, A. Belianinov, S. Jesse, S. V. Kalinin, L. Q. Chen, W. M. Rainforth, I. M. Reaney, C. A. Randall, and S. Trolier-McKinstry, Phys. Rev. B. 91, 134113 (2015).
D. Viehland, Phys. Rev. B 52, 778 (1995).
S. Watanabe and Y. Koyama, Phys. Rev. B 66, 134102 (2002).
J. Ricote, D. L. Corker, R. W. Whatmore, S. A. Impey, A. M. Glazer, J. Dec, and K. Roleder, J. Phys.: Condens. Matter 10, 1767 (1998).
H. Amorín, V. V. Shvartsman, I. K. Bdikin, M. E. V. Costa, A. L. Kholkin, and N. A. Pertsev, Appl. Phys. Lett. 88, 062903 (2006).
K. L. Kim, N. T. Tsou, and J. E. Huber, J. Appl. Phys. 113, 194104 (2013).
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977), pp. 680.

Data & Media loading...


Article metrics loading...



Pb(ZrTi)O single crystal with a low titanium content ( = 4%) was studied by the piezoresponse force microscopy (PFM) and X-ray diffraction (XRD). The XRD studies showed that the crystal faces are orthogonal to the principal cubic axes and confirmed the existence of an intermediate phase between the high-temperature paraelectric (PE) phase and the low-temperature antiferroelectric (AFE) one. A significant temperature hysteresis of phase transitions was observed by the XRD: On heating, the AFE state transforms into the intermediate one at about 373 K and the PE phase appears at 508 K, whereas on cooling the intermediate phase forms at 503 K and persists down to at least 313 K. The PFM investigation was focused on the intermediate phase and involved measurements of both out-of-plane and in-plane electromechanical responses of the (001)-oriented crystal face. The PFM images revealed the presence of polarization patterns switchable by an applied electric field, which confirms the ferroelectric character of the intermediate phase. Importantly, two types of regular domain structures were found, which differ by the spatial orientation of domain walls. The reconstruction of polarization configurations in the observed domain structures showed that one of them is a purely ferroelectric 180° structure with domain walls orthogonal to the crystal surface and parallel to one of the ⟨111⟩ pseudocubic directions. Another one is a ferroelectric-ferroelastic domain structure with the 71° walls parallel to the {101} or {011} crystallographic planes. Remarkably, this domain structure shows correlated out-of-plane and in-plane polarization reorientations after the poling with the aid of the microscope tip.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd