Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962994
1.
J. H. Kim, J. B. Lee, G. G. An, S. M. Yang, W. S. Chung, H. S. Park, and J. P. Hong, Sci. Rep.5 (2015).
2.
S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
3.
J. M. Teixeira, R. F. A. Silva, J. Ventura, A. M. Pereira, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, R. Ferreira, and P. P. Freitas, Mat. Sci. Eng.: B 126, 180 (2006).
http://dx.doi.org/10.1016/j.mseb.2005.09.031
4.
S. Sugahara and M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004).
http://dx.doi.org/10.1063/1.1689403
5.
C. Chappert, A. Fert, and F. N. Van Dau, Nat. Mater. 6, 813 (2007).
http://dx.doi.org/10.1038/nmat2024
6.
G. Wastlbauer and J. A. C. Bland, Adv. Phy. 54, 137 (2005).
http://dx.doi.org/10.1080/00018730500112000
7.
Y. B. Xu, E. T. M. Kernohan, D. J. Freeland, A. J. A. C. Ercole, M. Tselepi, and J. A. C. Bland, Phys. Rev. B 58, 890 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.890
8.
J. Sinha, M. Hayashi, A. J. Kellock, S. Fukami, M. Yamanouchi, H. Sato, S. Ikeda, S. Mitani, S.-h. Yang, S. S. P. Parkin et al., Appl. Phys. Lett. 102, 242405 (2013).
http://dx.doi.org/10.1063/1.4811269
9.
W. C. Tsai, S. C. Liao, H. C. Hou, C. T. Yen, Y. H. Wang, H. M. Tsai, F. H. Chang, H. J. Lin, and C.-H. Lai, Appl. Phys. Lett. 100, 172414 (2012).
http://dx.doi.org/10.1063/1.4707380
10.
F. Bianco, P. Bouchon, M. Sousa, G. Salis, and S. F. Alvarado, J. Appl. Phys. 104, 83901 (2008).
http://dx.doi.org/10.1063/1.2998973
11.
Y. B. Xu, E. T. M. Kernohan, M. Tselepi, J. A. C. Bland, and S. Holmes, Appl. Phys. Lett. 73, 399 (1998).
http://dx.doi.org/10.1063/1.121847
12.
Y. B. Xu, S. Hassan, P. K. J. Wong, J. Wu, J. S. Claydon, Y. X. Lu, C. D. Damsgaard, J. B. Hansen, C. S. Jacobsen, Y. Zhai et al., IEEE Trans. Magn. 44, 2959 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2002188
13.
A. Ionescu, M. Tselepi, D. M. Gillingham, G. Wastlbauer, S. Steinmüller, H. E. Beere, D. A. Ritchie, and J. A. C. Bland, Phys. Rev. B 72, 125404 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125404
14.
M. Dumm, M. Zölfl, R. Moosbühler, M. Brockmann, T. Schmidt, and G. Bayreuther, J. Appl. Phys. 87, 5457 (2000).
http://dx.doi.org/10.1063/1.373371
15.
P. Bruno, Phys. Rev. B 39, 865 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.865
16.
Y. B. Xu, D. J. Freeland, M. Tselepi, and J. A. C. Bland, Phys. Rev. B 62, 1167 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.1167
17.
A. T. Hindmarch, A. W. Rushforth, R. P. Campion, C. H. Marrows, and B. L. Gallagher, Phys. Rev. B 83, 212404 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.212404
18.
J. Hafner, M. Tegze, and C. Becker, Phys. Rev. B 49, 285 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.285
19.
D. M. Gillingham, M. Tselepi, A. Ionescu, S. J. Steinmuller, H. E. Beere, D. Ritchie, and J. A. C. Bland, Phys. Rev. B 76, 214412 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.214412
20.
T. Egami, C. D. Graham, Jr., W. Dmowski, P. Zhou, and P. J. Glanders, IEEE Trans. Magn. 23, 2269 (1987).
http://dx.doi.org/10.1109/TMAG.1987.1065651
21.
R. Alben, J. J. Becker, and M. C. Chi, J. Appl. Phys. 49, 1653 (1978).
http://dx.doi.org/10.1063/1.324881
22.
A. T. Hindmarch, C. J. Kinane, M. MacKenzie, J. N. Chapman, M. Henini, D. Taylor, D. A. Arena, J. Dvorak, B. J. Hickey, and C. Marrows, Phys. Rev. Lett. 100, 117201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.117201
23.
A. T. Hindmarch, D. A. Arena, K. J. Dempsey, M. Henini, and C. Marrows, Phys. Rev. B 81, 100407 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.100407
24.
W. Q. Liu, Y. B. Xu, P. K. J. Wong, N. J. Maltby, S. P. Li, X. F. Wang, J. Du, B. You, J. Wu, P. Bencok, and R. Zhang, Appl. Phys. Lett. 104, 142407 (2014).
http://dx.doi.org/10.1063/1.4871001
25.
R. Skomski, A. Kashyap, and A. Enders, J. Appl. Phys. 109, 07E143 (2011).
26.
H. Q. Tu, B. You, Y. Q. Zhang, Y. Gao, Y. B. Xu, and J. Du, IEEE Trans. Magn. 51, 1 (2015).
http://dx.doi.org/10.1109/TMAG.2015.2441719
27.
J. Trygg, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. Lett. 75, 2871 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.2871
28.
Y. B. Xu, M. Tselepi, C. M. Guertler, C. A. F. Vaz, G. Wastlbauer, J. A. C. Bland, E. Dudzik, and G. van der Laan, J. Appl. Phys. 89, 7156 (2001).
http://dx.doi.org/10.1063/1.1359473
29.
W. Liu, L. He, Y. Zhou, K. Murata, M. C. Onbasli, C. A. Ross, Y. Jiang, Y. Wang, Y. Xu, R. Zhang, and K. L. Wang, AIP Adv 6, 055813 (2016).
http://dx.doi.org/10.1063/1.4943157
30.
L. Lari, S. Lea, C. Feeser, B. W. Wessels, and V. K. Lazarov, J. Appl. Phys. 111, 07C311 (2012).
http://dx.doi.org/10.1063/1.3676202
31.
C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.152
32.
I. A. Kowalik, G. Öhrwall, B. N. Jensen, R. Sankari, E. Wallén, U. Johansson, O. Karis, and D. Arvanitis, in J. Phys: Conf. Ser Vol. 211 (IOP Publishing, 2010) p. 012030.
http://dx.doi.org/10.1088/1742-6596/211/1/012030
33.
C. T. Chen, Y. U. Idzerda, H. J. Lin, G. Meigs, A. Chaiken, G. A. Prinz, and G. H. Ho, Phys. Rev. B 48, 642 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.642
34.
T. Ueno, J. Sinha, N. Inami, Y. Takeichi, S. Mitani, K. Ono, and M. Hayashi, Sci. Rep. 5 (2015).
35.
D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
http://dx.doi.org/10.1063/1.1871344
36.
B. Cui, C. Song, Y. Y. Wang, W. S. Yan, F. Zeng, and F. Pan, J. Phys.:Condens. Matter 25, 106003 (2013).
http://dx.doi.org/10.1088/0953-8984/25/10/106003
37.
S. Kanai, M. Tsujikawa, Y. Miura, M. Shirai, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 105, 222409 (2014).
http://dx.doi.org/10.1063/1.4903296
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962994
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962994
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962994
2016-09-13
2016-09-25

Abstract

CoFeB amorphous films have been synthesized on GaAs(100) and studied with X-ray magnetic circular dichroism (XMCD) and transmission electron microscopy (TEM). We have found that the ratios of the orbital to spin magnetic moments of both the Co and Fe in the ultrathin amorphous film have been enhanced by more than 300% compared with those of the bulk crystalline Co and Fe, and specifically a large orbital moment of 0.56 from the Co atoms has been observed and at the same time the spin moment of the Co atoms remains comparable to that of the bulk hcp Co. The results indicate that the large uniaxial magnetic anisotropy (UMA) observed in the ultrathin CoFeB film on GaAs(100) is related to the enhanced spin-orbital coupling of the Co atoms in the CoFeB. This work offers experimental evidences of the correlation between the UMA and the element specific spin and orbital moments in the CoFeB amorphous film on the GaAs(100) substrate, which is of significance for spintronics applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962994.html;jsessionid=Ffdhiquw68_A_u9eguKm6jhn.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962994&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962994&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962994'
Right1,Right2,Right3,