Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4962995
1.
J. R. Choi and S. Zhang, “Thermodynamics of the standard quantum harmonic oscillator of time-dependent frequency with and without inverse quadratic potential,” J. Phys. A: Math. Gen. 35(12), 28452855 (2002).
http://dx.doi.org/10.1088/0305-4470/35/12/309
2.
M. S. Abdalla, “Quantum treatment of the time-dependent coupled oscillators,” J. Phys. A: Math. Gen. 29(9), 19972012 (1996).
http://dx.doi.org/10.1088/0305-4470/29/9/015
3.
S. Menouar, M. Maamache, and J. R. Choi, “An alternative approach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field,” Ann. Phys. 325(8), 17081719 (2010).
http://dx.doi.org/10.1016/j.aop.2010.04.011
4.
S. Menouar, M. Maamache, and J. R. Choi, “The time-dependent coupled oscillator model for the motion of a charged particle in the presence of a time-varying magnetic field,” Phys. Scr. 82(6), 065004(1-7) (2010).
http://dx.doi.org/10.1088/0031-8949/82/06/065004
5.
M. Molski, “Space-like coherent states of time-dependent Morse oscillator,” Eur. Phys. J. D 40(3), 411416 (2006).
http://dx.doi.org/10.1140/epjd/e2006-00182-3
6.
X.-C. Gao, J. Fu, J. Xu, and X. Zou, “Invariant theory and exact solutions for the quantum Dirac field in a time-dependent spatially homogeneous electric field,” Phys. Rev. A 59(1), 5563 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.55
7.
S. Menouar and J. R. Choi, “Analyzing quantum time-dependent singular potential systems in one dimension,” in Nonlinear Systems - Design, Analysis, Estimation and Control, InTech, Rijeka, 2016.
8.
D. Portes, H. Rodrigues, S. B. Duarte, and B. Baseia, “Time-dependent quantum oscillator as attenuator and amplifier noise and statistical evolutions,” Physica A 341(1), 379388 (2004).
http://dx.doi.org/10.1016/j.physa.2004.03.090
9.
V. V. Dodonov and A. V. Dodonov, “QED effects in a cavity with a time-dependent thin semiconductor slab excited by laser pulses,” J. Phys. B: At. Mol. Opt. Phys. 39(15), S749S766 (2006).
http://dx.doi.org/10.1088/0953-4075/39/15/S20
10.
J. R. Choi, “SU(1,1) Lie algebraic approach for the evolution of the quantum inflationary universe,” Physics of the Dark Universe 2(1), 4149 (2013).
http://dx.doi.org/10.1016/j.dark.2013.02.002
11.
S. Menouar and J. R. Choi, “A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field,” Ann. Phys. 353, 307316 (2014).
http://dx.doi.org/10.1016/j.aop.2014.11.014
12.
G. G. Amosov and V. I. Man’ko, “Quantum probability measure for parametric oscillators,” Phys. Lett. A 318(4-5), 287291 (2003).
http://dx.doi.org/10.1016/j.physleta.2003.08.045
13.
F. Yaşuk, I. Boztosun, and A. Durmus, “Orthogonal polynomial solutions to the non-central modified Kratzer potential,” arXiv: quant-ph/0605007 (2007).
14.
A. Arda and R. Sever, “Non-central potentials, exact solutions and Laplace transform approach,” J. Math. Chem. 50(6), 14841494 (2012).
http://dx.doi.org/10.1007/s10910-012-9984-y
15.
S. Menouar and J. R. Choi, “Quantization of time-dependent non-central singular potential systems in three dimensions by using the Nikiforov-Uvarov method,” J. Korean Phys. Soc. 68(4), 505512 (2016).
http://dx.doi.org/10.3938/jkps.68.505
16.
Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115(3), 485490 (1959).
http://dx.doi.org/10.1103/PhysRev.115.485
17.
B. Gönül and I. Zorba, “Supersymmetric solutions of non-central potentials,” Phys. Lett. A 269(2-3), 8388 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00252-8
18.
S. Flügge, Practical Quantum Mechanics I, Springer, Berlin, Heidelberg, New York, 1971.
19.
H. X. Quan, L. Guang, W. Z. Min, N. L. Bin, and M. Yan, “Solving Dirac equation with new ring-shaped non-spherical harmonic oscillator,” Commun. Theor. Phys. 53(2), 242 (2010).
20.
Z. M. Cang and W. Z. Bang, “Exact solutions of the Klein-Gordon equation with Makarov potential and a recurrence relation,” Chin. Phys. 16(7), 18631867 (2007).
21.
H. R. Lewis, Jr. and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10(8), 14581473 (1969).
http://dx.doi.org/10.1063/1.1664991
22.
F. Yaşuk, C. Berkdemir, and A. Berkdemir, “Exact solutions of the Schrödinger equation with non-central potential by the Nikiforov-Uvarov method,” J. Phys. A: Math. Gen 38(29), 65796586 (2005).
23.
M. Hamzavi, S. M. Ikhdair, and B. J. Falaye, “Dirac bound states of anharmonic oscillator in external fields,” Ann. Phys. 341, 153163 (2014).
http://dx.doi.org/10.1016/j.aop.2013.12.003
24.
S. M. Ikhdair and R. Sever, “Polynomial solution of non-central potentials,” Int. J. Theor. Phys. 46(10), 23842395 (2007).
http://dx.doi.org/10.1007/s10773-007-9356-8
25.
A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhuser Verlag Basel, Germany, 1988.
26.
R. L. Liboff, Introductory Quantum Mechanics, 4th ed., Addison Wesley, San Fransisco, CA, 2003.
27.
A. A. Makarov, J. A. Smorodinsky, K. H. Valiev, and P. Winternitz, “A systematic search for nonrelativistic systems with dynamical symmetries. Part I: The integrals of motion,” Nuovo Cimento A 52(4), 10611084 (1967).
http://dx.doi.org/10.1007/BF02755212
28.
J. Sadeghi and B. Pourhassan, “Exact solution of the non-central modified Kratzer potential plus a ring-shaped like potential by the factorization method,” Elect. J. Theor. Phys. 5(17), 193202 (2008).
29.
J. R. Choi and S. S. Choi, “SU(1,1) Lie algebra applied to the time-dependent quadratic Hamiltonian system perturbed by a singularity,” Int. J. Mod. Phys. B 18(26), 34293441 (2004).
http://dx.doi.org/10.1142/S0217979204026627
30.
J. R. Choi, “An approach to dark energy problem through linear invariants,” Chin. Phys. C 35(3), 233242 (2011).
http://dx.doi.org/10.1088/1674-1137/35/3/005
31.
K. H. Yeon, K. K. Lee, C. I. Um, T. F. George, and L. N. Pandey, “Exact quantum theory of a time-dependent bound quadratic Hamiltonian system,” Phys. Rev. A 48(4), 27162722 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.2716
32.
R. S. Kaushal and D. Parashar, “Time-dependent-harmonic plus inverse-harmonic potential in quantum mechanics,” Phys. Rev. A 55(4), 26102614 (1997).
http://dx.doi.org/10.1103/PhysRevA.55.2610
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4962995
Loading
/content/aip/journal/adva/6/9/10.1063/1.4962995
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4962995
2016-09-13
2016-12-03

Abstract

Quantum features of a dynamical system subjected to time-dependent non-central potentials are investigated. The entire potential of the system is composed of the inverse quadratic potential and the Coulomb potential. An invariant operator that enables us to treat the time-dependent Hamiltonian system in view of quantum mechanics is introduced in order to derive Schrödinger solutions (wave functions) of the system. To simplify the problem, the invariant operator is transformed to a simple form by unitary transformation. Quantum solutions in the transformed system are easily obtained because the transformed invariant operator is a time-dependent simple one. The Nikiforov-Uvarov method is used for solving eigenvalue equation of the transformed invariant operator. The double ring-shaped generalized non-central time-dependent potential is considered as a particular case for further study. From inverse transformation of quantum solutions obtained in the transformed system, the complete quantum solutions in the original system are identified. The quantum properties of the system are addressed on the basis of the wave functions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4962995.html;jsessionid=3Y1Wr_QSwz9ugfCcvzW_9KBF.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4962995&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4962995&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4962995'
Right1,Right2,Right3,