Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963079
1.
J. Suntivich, K. J. May, H. A. Gasteiger, J.B. Goodenough, and Y. Shao-Horn, “A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles,” Science 334, 1383 (2011).
http://dx.doi.org/10.1126/science.1212858
2.
W. T. Hong et al., “Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis,” Energy Environ. Sci. 8, 1404 (2015).
http://dx.doi.org/10.1039/C4EE03869J
3.
J. Suntivich et al., “Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries,” Nat. Chem. 3, 546 (2011).
http://dx.doi.org/10.1038/nchem.1069
4.
M. Risch et al., “La0.8Sr0.2MnO3-δdecorated with Ba0.5Sr0.5Co0.8Fe0.2O3-δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity,” J. Am. Chem. Soc. 136, 5229 (2014).
http://dx.doi.org/10.1021/ja5009954
5.
K. Zhang et al., “Nanostructured Mn-based oxides for electrochemical energy storage and conversion,” Chem. Soc. Rev. 44, 699 (2015).
http://dx.doi.org/10.1039/C4CS00218K
6.
J. Kim, X. Yin, K. C. Tsao, S. Fang, and H. Yang, “Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction,” J. Am. Chem. Soc. 136, 14646 (2014).
http://dx.doi.org/10.1021/ja506254g
7.
B. Hammer and J. K. Nørskov, “Theoretical surface science and catalysis—Calculations and concepts,” Adv. Catal. 45, 71 (2000).
8.
J. O. Bockris and T. Otagawa, “The electrocatalysis of oxygen evolution on perovskites,” J. Electrochem. Soc. 131, 290 (1984).
http://dx.doi.org/10.1149/1.2115565
9.
J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, and J. K. Nørskov, “Electrolysis of water on oxide surfaces,” J. Electroanal. Chem. 607, 83 (2007).
http://dx.doi.org/10.1016/j.jelechem.2006.11.008
10.
M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Reviews of Modern Physics 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
11.
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
12.
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
13.
P. E. Blöchl, “Projector augmented-wave method,” Physical Review B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
14.
V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,” Physical Review B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
15.
W. Metzner and D. Vollhardt, “Correlated lattice fermions ind=dimensions,” Physical Review Letters 62, 324 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.324
16.
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,” Reviews of Modern Physics 68, 13 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.13
17.
F. Lu, W.-H. Wang, and L.-J. Zou, “Metal-insulator transition in the half-filling two-orbital Hubbard model on the triangular lattice,” Physical Review B 77, 125117 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125117
18.
G. Kotliar et al., “Electronic structure calculations with dynamical mean-field theory,” Reviews of Modern Physics 78, 865 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.865
19.
X. Deng, L. Wang, X. Dai, and Z. Fang, “Local density approximation combined with Gutzwiller method for correlated electron systems: Formalism and applications,” Physical Review B 79, 075114 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075114
20.
F. Lu, J. Zhao, H. Weng, Z. Fang, and X. Dai, “Correlated topological insulators with mixed valence,” Physical Review Letters 110, 096401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.096401
21.
E. Gull et al., “Continuous-time Monte Carlo methods for quantum impurity models,” Reviews of Modern Physics 83, 349 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.349
22.
L. Huang et al., “iQIST: An open source continuous-time quantum Monte Carlo impurity solver toolkitsolver toolkit,” Computer Physics Communications 195, 140 (2015).
http://dx.doi.org/10.1016/j.cpc.2015.04.020
23.
N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, “Maximally localized Wannier functions: Theory and applications,” Reviews of Modern Physics 84, 1419 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1419
24.
J. Mravlje, M. Aichhorn, and A. Georges, “Origin of the high Néel temperature in SrTcO3,” Physical Review Letters 108, 197202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.197202
25.
C. Castellani, C. R. Natoli, and J. Ranninger, “Magnetic structure of V2O3 in the insulating phase,” Physical Review B 18, 4945 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.4945
26.
D. Neagu, G. Tsekouras, D. N. Miller, H. Ménard, and J. T. Irvine, “In situ growth of nanoparticles through control of non-stoichiometry,” Nature Chemistry 5, 916923 (2013).
http://dx.doi.org/10.1038/nchem.1773
27.
W. Zhang and W. T. Zheng, “Exsolution-mimic heterogeneous surfaces: Towards unlimited catalyst design,” ChemCatChem 7, 4850 (2015).
http://dx.doi.org/10.1002/cctc.201402757
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963079
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963079
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963079
2016-09-14
2016-12-05

Abstract

3-orbital filling in transition metal oxide is crucial to govern the catalytic activity in oxygen evolution reduction, nevertheless, it is not fundamentally accessible why specific orbital occupation produces a highest catalytic performance. Here, we utilize brownmillerite CaMnO to clarify the orbital selective catalytic behavior due to the crystal field splitting and on-site coulomb interactions. Within density functional theory plus dynamical mean field theory, CaMnO shows a paramagnetic Mott insulating behavior at room temperature, consistent with optical adsorption spectra and magnetic susceptibility. As the center of the orbital locates in the lower Hubbard sub-band, the unit occupation on orbital provides a moderate bonding with external O* species to cause a high catalytic activity of CaMnO with a square pyramid crystal field. Such concept of unit occupation of near Fermi level could be extended to other crystal fields for future design of oxide catalysts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963079.html;jsessionid=VePOc7CdwU7IeFs2iu_jZAE-.x-aip-live-03?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963079&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963079&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963079'
Right1,Right2,Right3,