Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963198
1.
W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
2.
A. Polman and H. A. Atwater, Nat. Mater. 11, 174 (2012).
http://dx.doi.org/10.1038/nmat3263
3.
A. Luque, J. Appl. Phys. 110, 031301 (2011).
http://dx.doi.org/10.1063/1.3600702
4.
R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).
http://dx.doi.org/10.1063/1.2734507
5.
S. M. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, Appl. Phys. Lett. 102, 033901 (2013).
http://dx.doi.org/10.1063/1.4758300
6.
K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick et al., IEEE J. Photovolt. 3, 1423 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2273097
7.
F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. ND Tibbits, E. Oliva et al., Prog. Photovolt.: Res. Appl. 22, 277 (2014).
http://dx.doi.org/10.1002/pip.2475
8.
L. Fraas, J. Avery, V. Sundaram, V. Dinh, T. Davenport, J. Yerkes, J. Gee and K. Emery, in Proceedings of IEEE Photovoltaic Specialists Conference, (1990), pp. 190195.
9.
X. Sheng, C. A. Bower, S. Bonafede, J. W. Wilson, B. Fisher, M. Meitl, H. Yuen et al., Nat. Mater. 13, 593 (2014).
http://dx.doi.org/10.1038/nmat3946
10.
A. G. Imenes and D. R. Mills, Sol. Energ. Mater. Sol. C. 84, 19 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.01.038
11.
A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, Renew. Sust. Energ. Rev. 28, 654 (2013).
http://dx.doi.org/10.1016/j.rser.2013.08.026
12.
H. A. Macleod, Thin-film optical filters (CRC Press, New York, 2001).
13.
A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz et al., Prog. Photovolt.: Res. Appl. 17, 75 (2009).
http://dx.doi.org/10.1002/pip.852
14.
J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray et al., Prog. Photovolt.: Res. Appl. 19, 352 (2011).
http://dx.doi.org/10.1002/pip.1030
15.
B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, Prog. Photovolt.: Res. Appl. 19, 61 (2011).
http://dx.doi.org/10.1002/pip.988
16.
C. N. Eisler, E. D. Kosten, E. C. Warmann and H. A. Atwater, in Proceedings of IEEE Photovoltaic Specialists Conference, (2013), pp. 18481851.
17.
X. Wang, N. Waite, P. Murcia, K. Emery, M. Steiner, F. Kiamilev, K. Goossen, C. Honsberg, and A. Barnett, Prog. Photovolt.: Res. Appl. 20, 149 (2012).
http://dx.doi.org/10.1002/pip.1194
18.
A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, Sol. Energ. Mater. Sol. C 136, 120 (2015).
http://dx.doi.org/10.1016/j.solmat.2015.01.005
19.
T. Kinoshita, K. Nonomura, N. J. Jeon, F. Giordano, A. Abate, S. Uchida, T. Kubo et al., Nat. Commun. 6, 8834 (2015).
http://dx.doi.org/10.1038/ncomms9834
20.
S. Rühle, A. Segal, A. Vilan, S. R. Kurtz, L. Grinis, A. Zaban, I. Lubomirsky, and D. Cahen, J. Renew. Sust. Energ. 1, 013106 (2009).
http://dx.doi.org/10.1063/1.3081510
21.
K. Xiong, S. Lu, J. Dong, T. Zhou, D. Jiang, R. Wang, and H. Yang, Sol. Energ. 84, 1975 (2010).
http://dx.doi.org/10.1016/j.solener.2010.10.011
22.
R. K. Kostuk and G. Rosenberg, Proc. SPIE 7043, 70430I (2008).
23.
D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, Proc. SPIE 8468, 846807 (2012).
http://dx.doi.org/10.1117/12.929187
24.
M. D. Escarra, S. Darbe, E. C. Warmann, and H. A. Atwater, in Proceedings of IEEE Photovoltaic Specialists Conference, (2013), pp. 18521855.
25.
G. B. Ingersoll, D. Lin, and J. R. Leger, Proc. SPIE 8821, 882107 (2013).
http://dx.doi.org/10.1117/12.2024295
26.
M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, D. Roncati, L. Kimerling, and J. Michel, Opt. Express 20, 9004 (2012).
http://dx.doi.org/10.1364/OE.20.009004
27.
C. Maragliano, M. Chiesa, and M. Stefancich, J. Opt. 17, 105901 (2015).
http://dx.doi.org/10.1088/2040-8978/17/10/105901
28.
J. R. Onffroy, D. E. Stoltzmann, R. J. H. Lin, and G. R. Knowles, in Proceedings of the 15th Intersociety Energy Conversion Engineering Conference, (1980), pp. 371376.
29.
C. Michel, J. Loicq, F. Languy, and S. Habraken, Sol. Energ. Mater. Sol. C. 120, 183 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.08.042
30.
G. Kim, J.-A. Domínguez-Caballero, and R. Menon, Opt. Express 20, 2814 (2012).
http://dx.doi.org/10.1364/OE.20.002814
31.
P. Wang, J.-A. Dominguez-Caballero, D. Friedman, and R. Menon, Prog. Photovolt.: Res. Appl. 23, 1073 (2015).
http://dx.doi.org/10.1002/pip.2516
32.
N. Mohammad, P. Wang, D. J. Friedman, and R. Menon, Opt. Express 22, A1519 (2014).
http://dx.doi.org/10.1364/OE.22.0A1519
33.
N. Mohammad, P. Wang, D. J. Friedman, K. Ramanathan, L. Mansfield, and R. Menon, in CLEO: Applications and Technology, San Jose, U.S.A., (2015), pp. ATu2J.2.
36.
D. C. Jordan and S. R. Kurtz, Prog. Photovolt.: Res. Appl. 21, 12 (2013).
http://dx.doi.org/10.1002/pip.1182
37.
J. A. del Cueto, S. Rummel, B. Kroposki, C. Osterwald, and A. Anderberg, in Proceedings of IEEE Photovoltaic Specialists Conference, (2008), pp. 16.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963198
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963198
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963198
2016-09-16
2016-12-06

Abstract

In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only m. Electrical measurements under direct sunlight demonstrated an increase of in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. This system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963198.html;jsessionid=gZcJH6L-FBDTMTQNgmpanHZM.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963198&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963198&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963198'
Right1,Right2,Right3,