Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963204
1.
S. C. Burkhart, E. Bliss, P. Di Nicola, D. Kalantar, R. Lowe-Webb, T. McCarville, D. Nelson, T. Salmon, T. Schindler, J. Villanueva, and K. Wilhelmsen, Appl. Opt. 50, 1136 (2011).
http://dx.doi.org/10.1364/AO.50.001136
2.
J. Ebrardt and J. M. Chaput, J. Phys. Conf. Ser. 244, 32017 (2010).
http://dx.doi.org/10.1088/1742-6596/244/3/032017
3.
M. Chambonneau, R. Diaz, P. Grua, J.-L. Rullier, G. Duchateau, J.-Y. Natoli, and L. Lamaignère, Appl. Phys. Lett. 104, 21121 (2014).
http://dx.doi.org/10.1063/1.4861748
4.
S. Schwarz, S. Rung, and R. Hellmann, Appl. Phys. Lett. 108, 181607 (2016).
http://dx.doi.org/10.1063/1.4948522
5.
R. A. Negres, M. W. Burke, S. B. Sutton, P. DeMange, M. D. Feit, and S. G. Demos, Appl. Phys. Lett. 90, 61115 (2007).
http://dx.doi.org/10.1063/1.2472775
6.
Y. Wang, X. Xu, and L. Zheng, Appl. Phys. A 92, 849 (2008).
http://dx.doi.org/10.1007/s00339-008-4579-y
7.
A. Wootton, B. Thomas, and P. Harrowell, J. Chem. Phys. 115, 3336 (2001).
http://dx.doi.org/10.1063/1.1387039
8.
L. Zheng, J. C. Lambropoulos, and A. W. Schmid, J. Non-Cryst. Solids 347, 144 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.07.062
9.
H. Hosono, Y. Ikuta, T. Kinoshita, K. Kajihara, and M. Hirano, Phys. Rev. Lett. 87, 175501 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.175501
10.
T. E. Tsai and D. L. Griscom, Phys. Rev. Lett. 67, 2517 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2517
11.
H. M. Aktulga, J. C. Fogarty, S. A. Pandit, and A. Y. Grama, Parallel Comput. 38, 245 (2012).
http://dx.doi.org/10.1016/j.parco.2011.08.005
12.
J. Yeon and A. C. T. van Duin, J. Phys. Chem. C 120, 305 (2016).
http://dx.doi.org/10.1021/acs.jpcc.5b09784
13.
J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, J. Chem. Phys. 132, 174704 (2010).
http://dx.doi.org/10.1063/1.3407433
14.
Y. Yu, B. Wang, M. Wang, G. Sant, and M. Bauchy, J. Non-Cryst. Solids 443, 148 (2016).
http://dx.doi.org/10.1016/j.jnoncrysol.2016.03.026
15.
P. Norman, T. E. Schwartzentruber, H. Leverentz, S. Luo, R. Meana-Pañeda, Y. Paukku, and D. G. Truhlar, J. Phys. Chem. C 117, 9311 (2013).
http://dx.doi.org/10.1021/jp4019525
16.
D. I. Grimley, A. C. Wright, and R. N. Sinclair, J. Non-Cryst. Solids 119, 49 (1990).
http://dx.doi.org/10.1016/0022-3093(90)90240-M
17.
F. Piao, W. G. Oldham, and E. E. Haller, J. Non-Cryst. Solids 276, 61 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00263-5
18.
G. Pacchioni, L. Skuja, and D. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology (Springer Science & Business Media, 2012).
19.
A. Pasquarello, M. S. Hybertsen, and R. Car, Nature 396, 58 (1998).
http://dx.doi.org/10.1038/23908
20.
X. Zhou, X. Zhou, J. Huang, Q. Cheng, F. Wang, X. Ye, X. Jiang, and W. Wu, Adv. Condens. Matter Phys. 2014, e853764.
http://dx.doi.org/10.1155/2014/853764
21.
C. H. Li, X. Ju, J. Huang, X. D. Zhou, Z. Zheng, X. D. Jiang, W. D. Wu, and W. G. Zheng, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269, 544 (2011).
http://dx.doi.org/10.1016/j.nimb.2011.01.005
22.
J. M. Rimsza and J. Du, J. Am. Ceram. Soc. 98, 3748 (2015).
http://dx.doi.org/10.1111/jace.13731
23.
J. Du and A. N. Cormack, J. Am. Ceram. Soc. 88, 2532 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2005.00352.x
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963204
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963204
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963204
2016-09-16
2016-09-29

Abstract

Atomic structural modification and defect processes of fused silica resulting from UV-laser irradiation are studied by a combination of molecular dynamics (MD) simulations and the Reactive Force Field (ReaxFF). Bond state transitions by laser excitation are modeled as the result of localized recoils during energy deposition. Computations of pair distribution functions and bond angle distributions of the irradiated structure reveal that fused silica undergoes significant changes in terms of Si-O, Si-Si pair distances and Si-O-Si bond angles, which are attributed to the formation of silicon and oxygen coordination defects. It is found that nonbridging oxygen is responsible for the decreased Si-O bond length, while laser-induced five-coordinated silicon leads to small Si-O-Si bond angles in 2-membered rings.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963204.html;jsessionid=0cT4zBllavtkcT0Mj4Vdmsid.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963204&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963204&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963204'
Right1,Right2,Right3,