Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963300
1.
J. Watrous, “On one-dimensional quantum cellular automata,” in Proceedings, 36th Annual Symposium on Foundations of Computer Science (IEEE, 1995) pp. 528537.
2.
R. Raussendorf, “Quantum cellular automaton for universal quantum computation,” Phys. Rev. A 72, 022301 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.022301
3.
K. G. H. Vollbrecht and J. I. Cirac, “Reversible universal quantum computation within translation-invariant systems,” Phys. Rev. A 73, 012324 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.012324
4.
C. A. Perez-Delgado and D. Cheung, “Local unitary quantum cellular automata,” Phys. Rev. A 76, 032320 (2007).
http://dx.doi.org/10.1103/physreva.76.032320
5.
D. Nagaj and P. Wocjan, “Hamiltonian quantum cellular automata in one dimension,” Phys. Rev. A 78, 032311 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.032311
6.
P. Arrighi and J. Grattage, “Partitioned quantum cellular automata are intrinsically universal,” Natural Computing 11, 1322 (2012).
http://dx.doi.org/10.1007/s11047-011-9277-6
7.
P. Arrighi and J. Grattage, “Intrinsically universal n-dimensional quantum cellular automata,” Journal of Computer and System Sciences 78, 18831898 (2012).
http://dx.doi.org/10.1016/j.jcss.2011.12.008
8.
T.-C. Wei and J. C. Liang, “Hamiltonian quantum computer in one dimension,” Phys. Rev. A 92, 062334 (2015).
http://dx.doi.org/10.1103/PhysRevA.92.062334
9.
P. Vlachos and I. G. Karafyllidis, “Simulation of quantum key expansion using quantum cellular automata,” Computer Physics Communications 180, 251255 (2009).
http://dx.doi.org/10.1016/j.cpc.2008.10.002
10.
M. Andrecut and M. K. Ali, “Entanglement dynamics in quantum cellular automata,” Phys. Lett. A 326, 328332 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.04.064
11.
G. K. Brennen and J. E. Williams, “Entanglement dynamics in one-dimensional quantum cellular automata,” Phys. Rev. A 68, 042311 (2003).
http://dx.doi.org/10.1103/PhysRevA.68.042311
12.
M. Avalle, M. G. Genoni, and A. Serafini, “Quantum state transfer through noisy quantum cellular automata,” J. Phys. A: Math. Theor. 48, 195304 (2015).
http://dx.doi.org/10.1088/1751-8113/48/19/195304
13.
M. Avalle and A. Serafini, “Noisy quantum cellular automata for quantum versus classical excitation transfer,” Phys. Rev. Lett. 112, 170403 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.170403
14.
G. M. D’Ariano, C. Macchiavello, and M. Rossi, “Quantum cloning by cellular automata,” Phys. Rev. A 87, 032337 (2013).
http://dx.doi.org/10.1103/physreva.87.032337
15.
A. Bisio, G. M. D. Ariano, and A. Tosini, “Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential,” Phys. Rev. A 88, 032301 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.032301
16.
A. Bisio, G. M. D’Ariano, and A. Tosini, “Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension,” Annals of Physics 354, 244264 (2015).
http://dx.doi.org/10.1016/j.aop.2014.12.016
17.
G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini, “Path-integral solution of the one-dimensional Dirac quantum cellular automaton,” Phys. Lett. A 378, 31653168 (2014).
http://dx.doi.org/10.1016/j.physleta.2014.09.020
18.
G. M. D’Ariano and P. Perinotti, “Derivation of the Dirac equation from principles of information processing,” Phys. Rev. A 90, 062106 (2014).
http://dx.doi.org/10.1103/physreva.90.062106
19.
A. Bibeau-Delisle, A. Bisio, G. M. D. Ariano, P. Perinotti, and A. Tosini, “Doubly special relativity from quantum cellular automata,” Europhys. Lett. 109, 50003 (2015).
http://dx.doi.org/10.1209/0295-5075/109/50003
20.
J. Twamley, “Quantum-cellular-automata quantum computing with endohedral fullerenes,” Phys. Rev. A 67, 052318 (2003).
http://dx.doi.org/10.1103/PhysRevA.67.052318
21.
K. Wiesner, “Quantum cellular automata,” in Computational Complexity, edited by R. A. Meyers (Springer, New York, 2012) pp. 23512360.
22.
W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802803 (1982).
http://dx.doi.org/10.1038/299802a0
23.
S. C. Benjamin, “Schemes for parallel quantum computation without local control of qubits,” Phys. Rev. A 61, 020301 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.020301
24.
D. J. Shepherd, T. Franz, and R. F. Werner, “Universally programmable quantum cellular automaton,” Phys. Rev. Lett. 97, 020502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.020502
25.
I. L. Chuang, R. Laflamme, P. W. Shor, and W. H. Zurek, “Quantum computers, factoring, and decoherence,” Science 270, 16331635 (1995).
http://dx.doi.org/10.1126/science.270.5242.1633
26.
S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Rep. Prog. Phys. 76, 076001 (2013).
http://dx.doi.org/10.1088/0034-4885/76/7/076001
27.
P. J. Love and B. M. Boghosian, “From Dirac to diffusion: Decoherence in quantum lattice gases,” Quantum Information Processing 4, 335354 (2005).
http://dx.doi.org/10.1007/s11128-005-7852-4
28.
G. A. Paz-Silva, G. K. Brennen, and J. Twamley, “Fault tolerance with noisy and slow measurements and preparation,” Phys. Rev. Lett. 105, 100501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.100501
29.
G. A. Paz-Silva, G. K. Brennen, and J. Twamley, “Bulk fault-tolerant quantum information processing with boundary addressability,” New Journal of Physics 13, 013011 (2011).
http://dx.doi.org/10.1088/1367-2630/13/1/013011
30.
H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics, New Series: Monographs, Vol. m18 (Springer, Berlin, 1993).
31.
H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer-Verlag, 2008).
32.
G. K. Brennen, Eq. 7 in Ref. 11 has a typographical error. Our Eq. 19 is based on the corrected update rule, private communication (2014).
33.
J. R. Johansson, P. D. Nation, and F. Nori, “Qutip: An open-source python framework for the dynamics of open quantum systems,” Comp. Phys. Comm. 183, 17601772 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.02.021
34.
J. R. Johansson, P. D. Nation, and F. Nori, “Qutip 2: A python framework for the dynamics of open quantum systems,” Comp. Phys. Comm. 184, 1234 (2013).
http://dx.doi.org/10.1016/j.cpc.2012.11.019
35.
K. Życzkowski and H.-J. Sommers, “Average fidelity between random quantum states,” Phys. Rev. A 71, 032313 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.032313
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963300
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963300
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963300
2016-09-19
2016-12-07

Abstract

This work expands a previous block-partitioned quantum cellular automata (BQCA) model proposed by Brennen and Williams [Phys. Rev. A. , 042311 (2003)] to incorporate physically realistic error models. These include timing errors in the form of over- and under-rotations of quantum states during computational gate sequences, stochastic phase and bit flip errors, as well as undesired two-bit interactions occurring during single-bit gate portions of an update sequence. A compensation method to counteract the undesired pairwise interactions is proposed and investigated. Each of these error models is implemented using Monte Carlo simulations for stochastic errors and modifications to the prescribed gate sequences to account for coherent over-rotations. The impact of these various errors on the function of a QCA gate sequence is evaluated using the fidelity of the final state calculated for four quantum information processing protocols of interest: state transfer, state swap, GHZ state generation, and entangled pair generation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963300.html;jsessionid=9YX_uwZVua5PEhWoOShk5Wyn.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963300&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963300&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963300'
Right1,Right2,Right3,