Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Watrous, “On one-dimensional quantum cellular automata,” in Proceedings, 36th Annual Symposium on Foundations of Computer Science (IEEE, 1995) pp. 528537.
R. Raussendorf, “Quantum cellular automaton for universal quantum computation,” Phys. Rev. A 72, 022301 (2005).
K. G. H. Vollbrecht and J. I. Cirac, “Reversible universal quantum computation within translation-invariant systems,” Phys. Rev. A 73, 012324 (2006).
C. A. Perez-Delgado and D. Cheung, “Local unitary quantum cellular automata,” Phys. Rev. A 76, 032320 (2007).
D. Nagaj and P. Wocjan, “Hamiltonian quantum cellular automata in one dimension,” Phys. Rev. A 78, 032311 (2008).
P. Arrighi and J. Grattage, “Partitioned quantum cellular automata are intrinsically universal,” Natural Computing 11, 1322 (2012).
P. Arrighi and J. Grattage, “Intrinsically universal n-dimensional quantum cellular automata,” Journal of Computer and System Sciences 78, 18831898 (2012).
T.-C. Wei and J. C. Liang, “Hamiltonian quantum computer in one dimension,” Phys. Rev. A 92, 062334 (2015).
P. Vlachos and I. G. Karafyllidis, “Simulation of quantum key expansion using quantum cellular automata,” Computer Physics Communications 180, 251255 (2009).
M. Andrecut and M. K. Ali, “Entanglement dynamics in quantum cellular automata,” Phys. Lett. A 326, 328332 (2004).
G. K. Brennen and J. E. Williams, “Entanglement dynamics in one-dimensional quantum cellular automata,” Phys. Rev. A 68, 042311 (2003).
M. Avalle, M. G. Genoni, and A. Serafini, “Quantum state transfer through noisy quantum cellular automata,” J. Phys. A: Math. Theor. 48, 195304 (2015).
M. Avalle and A. Serafini, “Noisy quantum cellular automata for quantum versus classical excitation transfer,” Phys. Rev. Lett. 112, 170403 (2014).
G. M. D’Ariano, C. Macchiavello, and M. Rossi, “Quantum cloning by cellular automata,” Phys. Rev. A 87, 032337 (2013).
A. Bisio, G. M. D. Ariano, and A. Tosini, “Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential,” Phys. Rev. A 88, 032301 (2013).
A. Bisio, G. M. D’Ariano, and A. Tosini, “Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension,” Annals of Physics 354, 244264 (2015).
G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini, “Path-integral solution of the one-dimensional Dirac quantum cellular automaton,” Phys. Lett. A 378, 31653168 (2014).
G. M. D’Ariano and P. Perinotti, “Derivation of the Dirac equation from principles of information processing,” Phys. Rev. A 90, 062106 (2014).
A. Bibeau-Delisle, A. Bisio, G. M. D. Ariano, P. Perinotti, and A. Tosini, “Doubly special relativity from quantum cellular automata,” Europhys. Lett. 109, 50003 (2015).
J. Twamley, “Quantum-cellular-automata quantum computing with endohedral fullerenes,” Phys. Rev. A 67, 052318 (2003).
K. Wiesner, “Quantum cellular automata,” in Computational Complexity, edited by R. A. Meyers (Springer, New York, 2012) pp. 23512360.
W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802803 (1982).
S. C. Benjamin, “Schemes for parallel quantum computation without local control of qubits,” Phys. Rev. A 61, 020301 (2000).
D. J. Shepherd, T. Franz, and R. F. Werner, “Universally programmable quantum cellular automaton,” Phys. Rev. Lett. 97, 020502 (2006).
I. L. Chuang, R. Laflamme, P. W. Shor, and W. H. Zurek, “Quantum computers, factoring, and decoherence,” Science 270, 16331635 (1995).
S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Rep. Prog. Phys. 76, 076001 (2013).
P. J. Love and B. M. Boghosian, “From Dirac to diffusion: Decoherence in quantum lattice gases,” Quantum Information Processing 4, 335354 (2005).
G. A. Paz-Silva, G. K. Brennen, and J. Twamley, “Fault tolerance with noisy and slow measurements and preparation,” Phys. Rev. Lett. 105, 100501 (2010).
G. A. Paz-Silva, G. K. Brennen, and J. Twamley, “Bulk fault-tolerant quantum information processing with boundary addressability,” New Journal of Physics 13, 013011 (2011).
H. J. Carmichael, An Open Systems Approach to Quantum Optics, Lecture Notes in Physics, New Series: Monographs, Vol. m18 (Springer, Berlin, 1993).
H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer-Verlag, 2008).
G. K. Brennen, Eq. 7 in Ref. 11 has a typographical error. Our Eq. 19 is based on the corrected update rule, private communication (2014).
J. R. Johansson, P. D. Nation, and F. Nori, “Qutip: An open-source python framework for the dynamics of open quantum systems,” Comp. Phys. Comm. 183, 17601772 (2012).
J. R. Johansson, P. D. Nation, and F. Nori, “Qutip 2: A python framework for the dynamics of open quantum systems,” Comp. Phys. Comm. 184, 1234 (2013).
K. Życzkowski and H.-J. Sommers, “Average fidelity between random quantum states,” Phys. Rev. A 71, 032313 (2005).

Data & Media loading...


Article metrics loading...



This work expands a previous block-partitioned quantum cellular automata (BQCA) model proposed by Brennen and Williams [Phys. Rev. A. , 042311 (2003)] to incorporate physically realistic error models. These include timing errors in the form of over- and under-rotations of quantum states during computational gate sequences, stochastic phase and bit flip errors, as well as undesired two-bit interactions occurring during single-bit gate portions of an update sequence. A compensation method to counteract the undesired pairwise interactions is proposed and investigated. Each of these error models is implemented using Monte Carlo simulations for stochastic errors and modifications to the prescribed gate sequences to account for coherent over-rotations. The impact of these various errors on the function of a QCA gate sequence is evaluated using the fidelity of the final state calculated for four quantum information processing protocols of interest: state transfer, state swap, GHZ state generation, and entangled pair generation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd