Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963304
1.
G. I. Barenblatt and L. R. Botvina, Izv. AN SSSR. MTT 4, 161165 (1983).
2.
J. B. Rundle and W. Klein, Phys. Rev. Lett. 63(2), 171174 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.171
3.
A. Sornette and D. Sornette, Tectonophys. 179(3-4), 327334 (1990).
http://dx.doi.org/10.1016/0040-1951(90)90298-M
4.
R. L. Blumberg Selinger, Z.-G. Wang, W. M. Gelbart, and A. Ben-Shaul, Phys. Rev. A 43(8), 43964400 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.4396
5.
D. Sornette and C. G. Sammis, J. Phys. I 5(5), 607619 (1995).
http://dx.doi.org/10.1051/jp1:1995154
6.
A. Buchel and J. P. Sethna, Phys. Rev. Lett. 77(8), 15201523 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1520
7.
J. V. Andersen, D. Sornette, and K.-T. Leung, Phys. Rev. Lett. 78(11), 21402143 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2140
8.
A. Buchel and J. P. Sethna, Phys. Rev. E 55(6), 76697690 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.7669
9.
S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, Phys. Rev. Lett. 78(8), 14081411 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1408
10.
D. Sornette and J. V. Andersen, Eur. Phys. J. B 1(3), 353357 (1998).
http://dx.doi.org/10.1007/s100510050194
11.
S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, Physica A 270(1-2), 5762 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00125-9
12.
S. Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, Phys. Rev. E 59(5), 50495057 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.5049
13.
G. I. Barenblatt, Int. J. Fract. 138(1), 1935 (2006).
http://dx.doi.org/10.1007/s10704-006-0036-0
14.
H. J. Herrmann and S. Roux, (North-Holland, Amsterdam, 1990), p. 353.
15.
D. Krajcinovic, Damage Mechanics (Elsevier, Amsterdam, 1996).
16.
B. K. Chakrabarti and L. G. Benguigui, Statistical Physics of Fracture and Breakdown in Disordered Systems (Clarendon Press, Oxford, 1997).
17.
D. L. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd ed. (Cambridge Univ. Press, Cambridge, 1997).
18.
D. Krajcinovic and J. van Mier, in CISM Courses and Lectures (Springer, Wien, 2000), p. 263.
19.
P. Bhattacharyya and B. K. Chakrabarti, in Lect. Notes Phys. (Springer, Berlin, 2006), p. 525.
20.
D. Sornette, Critical Phenomena in Natural Sciences, 2nd ed. (Springer, Berlin, 2006).
21.
S. G. Abaimov, Statistical physics of non-thermal phase transitions: From foundations to applications (Springer, 2015).
22.
S. G. Abaimov, J. Stat. Mech. 2008(9), P09005.
http://dx.doi.org/10.1088/1742-5468/2008/09/p09005
23.
S. G. Abaimov, J. Stat. Mech. 2009(3), P03039.
http://dx.doi.org/10.1088/1742-5468/2009/03/p03039
24.
F. T. Pierce, J. Textile Inst. Trans. 17(7), T355T368 (1926).
http://dx.doi.org/10.1080/19447027.1926.10599953
25.
H. E. Daniels, Proc. Roy. Soc. A 183(995), 405435 (1945).
http://dx.doi.org/10.1098/rspa.1945.0011
26.
B. D. Coleman, J. Mech. Phys. Solids 7(1), 6070 (1958).
http://dx.doi.org/10.1016/0022-5096(58)90039-5
27.
M. W. Suh, B. B. Bhattacharyya, and A. Grandage, J. Appl. Probab. 7(3), 712720 (1970).
http://dx.doi.org/10.1017/S0021900200110654
28.
S. L. Phoenix and H. M. Taylor, Advances in Applied Probability 5, 200216 (1973).
http://dx.doi.org/10.1017/S0001867800039148
29.
P. K. Sen, J. Appl. Probab. 10(3), 586596 (1973).
http://dx.doi.org/10.1017/S0021900200118455
30.
P. K. Sen, Ann. Stat. 1(3), 526537 (1973).
http://dx.doi.org/10.1214/aos/1176342418
31.
D. G. Harlow and S. L. Phoenix, J. Comp. Mat. 12(2), 195214 (1978).
http://dx.doi.org/10.1177/002199837801200207
32.
S. L. Phoenix, in Composite Materials: Testing and Design, edited by S. W. Tsai (ASTM, Philadelphia, PA, 1979), Vol. STP674, pp. 455483.
33.
R. L. Smith, Proc. Roy. Soc. A 372(1751), 539553 (1980).
http://dx.doi.org/10.1098/rspa.1980.0129
34.
D. G. Harlow and S. L. Phoenix, Int. J. Fract. 17(4), 347372 (1981).
http://dx.doi.org/10.1007/BF00036188
35.
D. G. Harlow and S. L. Phoenix, Int. J. Fract. 17(6), 601630 (1981).
http://dx.doi.org/10.1007/BF00681559
36.
R. L. Smith and S. L. Phoenix, J. Appl. Mech. 48(1), 7582 (1981).
http://dx.doi.org/10.1115/1.3157595
37.
D. G. Harlow and S. L. Phoenix, Advances in Applied Probability 14(1), 6894 (1982).
http://dx.doi.org/10.1017/S0001867800036715
38.
D. Krajcinovic and M. A. G. Silva, Int. J. Solids Struct. 18(7), 551562 (1982).
http://dx.doi.org/10.1016/0020-7683(82)90039-7
39.
R. L. Smith, Ann. Prob. 10(1), 137171 (1982).
http://dx.doi.org/10.1214/aop/1176993919
40.
S. L. Phoenix and R. L. Smith, Int. J. Solids Struct. 19(6), 479496 (1983).
http://dx.doi.org/10.1016/0020-7683(83)90086-0
41.
H. E. Daniels and T. H. R. Skyrme, Advances in Applied Probability 17(1), 8599 (1985).
http://dx.doi.org/10.1017/S0001867800014671
42.
D. G. Harlow, Proc. Roy. Soc. A 397, 211232 (1985).
http://dx.doi.org/10.1098/rspa.1985.0012
43.
H. E. Daniels, Advances in Applied Probability 21(2), 315333 (1989).
http://dx.doi.org/10.1017/S0001867800018565
44.
D. Sornette, J. Phys. A 22(6), L243L250 (1989).
http://dx.doi.org/10.1088/0305-4470/22/6/010
45.
D. Sornette and S. Redner, J. Phys. A 22(13), L619L625 (1989).
http://dx.doi.org/10.1088/0305-4470/22/13/016
46.
D. G. Harlow and S. L. Phoenix, J. Mech. Phys. Solids 39(2), 173200 (1991).
http://dx.doi.org/10.1016/0022-5096(91)90002-6
47.
P. C. Hemmer and A. Hansen, J. Appl. Mech. 59(4), 909914 (1992).
http://dx.doi.org/10.1115/1.2894060
48.
S. L. Phoenix and R. Raj, Acta Metall. Mater. 40(11), 28132828 (1992).
http://dx.doi.org/10.1016/0956-7151(92)90447-M
49.
D. Sornette, J. Phys. I 2(11), 20892096 (1992).
http://dx.doi.org/10.1051/jp1:1992269
50.
J. B. Gómez, D. Iñiguez, and A. F. Pacheco, Phys. Rev. Lett. 71(3), 380383 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.380
51.
D. Krajcinovic, V. Lubarda, and D. Sumarac, Mech. Mater. 15(2), 99115 (1993).
http://dx.doi.org/10.1016/0167-6636(93)90050-2
52.
P. M. Duxbury and P. L. Leath, Physical Review B 49(18), 1267612687 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12676
53.
A. Hansen and P. C. Hemmer, Phys. Lett. A 184(6), 394396 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90511-8
54.
A. Hansen and P. C. Hemmer, Trends Stat. Phys. 1, 213224 (1994).
55.
P. L. Leath and P. M. Duxbury, Physical Review B 49(21), 14905 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14905
56.
W. Lee, Phys. Rev. E 50(5), 3797 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.3797
57.
D. Sornette, J. Phys. I 4(2), 209221 (1994).
http://dx.doi.org/10.1051/jp1:1994133
58.
S.-D. Zhang and E.-J. Ding, Phys. Lett. A 193(5-6), 425430 (1994).
http://dx.doi.org/10.1016/0375-9601(94)90534-7
59.
S.-D. Zhang and E.-J. Ding, Physical Review B 53(2), 646654 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.646
60.
M. Kloster, A. Hansen, and P. C. Hemmer, Phys. Rev. E 56(3), 26152625 (1997).
http://dx.doi.org/10.1103/PhysRevE.56.2615
61.
W. A. Curtin and N. Takeda, J. Comp. Mat. 32(22), 20422059 (1998).
http://dx.doi.org/10.1177/002199839803202203
62.
R. da Silveira, Phys. Rev. Lett. 80(14), 3157 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3157
63.
A. Delaplace, S. Roux, and G. Pijaudier-Cabot, Int. J. Solids Struct. 36(10), 14031426 (1999).
http://dx.doi.org/10.1016/S0020-7683(98)00054-7
64.
S. Roux, A. Delaplace, and G. Pijaudier-Cabot, Physica A 270(1-2), 3541 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00154-5
65.
R. da Silveira, Am. J. Phys. 67(12), 11771188 (1999).
http://dx.doi.org/10.1119/1.19104
66.
Y. Moreno, J. B. Gómez, and A. F. Pacheco, Physica A 274(3-4), 400409 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00358-1
67.
B. Q. Wu and P. L. Leath, Physical Review B 59(6), 4002 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.4002
68.
F. Kun, S. Zapperi, and H. J. Herrmann, Eur. Phys. J. B 17(2), 269279 (2000).
http://dx.doi.org/10.1007/PL00011084
69.
Y. Moreno, J. B. Gómez, and A. F. Pacheco, Phys. Rev. Lett. 85(14), 28652868 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2865
70.
R. C. Hidalgo, F. Kun, and H. J. Herrmann, Phys. Rev. E 64(6), 066122 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.066122
71.
Y. Moreno, J. B. Gómez, and A. F. Pacheco, Physica A 296(1-2), 923 (2001).
http://dx.doi.org/10.1016/S0378-4371(01)00018-8
72.
G. G. Batrouni, A. Hansen, and J. Schmittbuhl, Phys. Rev. E 65(3), 036126 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036126
73.
R. C. Hidalgo, Y. Moreno, F. Kun, and H. J. Herrmann, Phys. Rev. E 65(4), 046148 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.046148
74.
S. R. Pride and R. Toussaint, Physica A 312(1-2), 159171 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)00816-6
75.
B. D. Coleman, J. Appl. Phys. 27(8), 862866 (1956).
http://dx.doi.org/10.1063/1.1722504
76.
B. D. Coleman, J. Appl. Phys. 28(9), 10581064 (1957).
http://dx.doi.org/10.1063/1.1722907
77.
B. D. Coleman, J. Appl. Phys. 28(9), 10651067 (1957).
http://dx.doi.org/10.1063/1.1722908
78.
Z. W. Birnbaum and S. C. Saunders, J. Am. Stat. Assoc. 53(281), 151159 (1958).
http://dx.doi.org/10.1080/01621459.1958.10501433
79.
B. D. Coleman, J. Appl. Phys. 29(6), 968983 (1958).
http://dx.doi.org/10.1063/1.1723343
80.
B. D. Coleman, Trans. Soc. Rheology 2(1), 195218 (1958).
http://dx.doi.org/10.1122/1.548830
81.
B. D. Coleman, J. Appl. Phys. 29(7), 10911099 (1958).
http://dx.doi.org/10.1063/1.1723366
82.
S. L. Phoenix, SIAM J. Appl. Math. 34(2), 227246 (1978).
http://dx.doi.org/10.1137/0134021
83.
S. L. Phoenix, Int. J. Fract. 14(3), 327344 (1978).
84.
S. L. Phoenix, Advances in Applied Probability 11(1), 153187 (1979).
http://dx.doi.org/10.1017/S0001867800031748
85.
S. L. Phoenix and L.-J. Tierney, Eng. Fract. Mech. 18(1), 193215 (1983).
http://dx.doi.org/10.1016/0013-7944(83)90107-8
86.
J. B. Gómez, Y. Moreno, and A. F. Pacheco, Phys. Rev. E 58(2), 15281532 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.1528
87.
M. Vázquez-Prada, J. B. Gómez, Y. Moreno, and A. F. Pacheco, Phys. Rev. E 60(3), 25812594 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.2581
88.
S.-D. Zhang, Phys. Rev. E 59(2), 15891592 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.1589
89.
L. Moral, J. B. Gómez, Y. Moreno, and A. F. Pacheco, J. Phys. A 34(47), 99839991 (2001).
http://dx.doi.org/10.1088/0305-4470/34/47/305
90.
L. Moral, Y. Moreno, J. B. Gómez, and A. F. Pacheco, Phys. Rev. E 63(6), 066106 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.066106
91.
Y. Moreno, A. M. Correig, J. B. Gómez, and A. F. Pacheco, J. Geophys. Res. 106(B4), 66096619 (2001).
http://dx.doi.org/10.1029/2000JB900396
92.
W. I. Newman and S. L. Phoenix, Phys. Rev. E 63(2), 021507 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.021507
93.
D. L. Turcotte, W. I. Newman, and R. Shcherbakov, Geophys. J. Int. 152(3), 718728 (2003).
http://dx.doi.org/10.1046/j.1365-246X.2003.01884.x
94.
O. E. Yewande, Y. Moreno, F. Kun, R. C. Hidalgo, and H. J. Herrmann, Phys. Rev. E 68(2), 026116 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.026116
95.
D. L. Turcotte and M. T. Glasscoe, Tectonophys. 383(1-2), 7180 (2004).
http://dx.doi.org/10.1016/j.tecto.2004.02.011
96.
K. Z. Nanjo and D. L. Turcotte, Geophys. J. Int. 162(3), 859866 (2005).
http://dx.doi.org/10.1111/j.1365-246X.2005.02683.x
97.
D. Sornette and J. V. Andersen, Europhys. Lett. 74(5), 778784 (2006).
http://dx.doi.org/10.1209/epl/i2006-10036-6
98.
S. L. Phoenix and W. I. Newman, Phys. Rev. E 80(6), 066115 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.066115
99.
D. Sornette and C. Vanneste, Phys. Rev. Lett. 68(5), 612615 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.612
100.
D. Sornette, C. Vanneste, and L. Knopoff, Phys. Rev. A 45(12), 83518357 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.8351
101.
C. Vanneste and D. Sornette, J. Phys. I 2(8), 16211644 (1992).
http://dx.doi.org/10.1051/jp1:1992231
102.
A. Guarino, R. Scorretti and S. Ciliberto, arxiv.org/abs/cond-mat/9908329v1, 1-11 (1999).
103.
S. Roux, Phys. Rev. E 62(5), 61646169 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.6164
104.
S. Ciliberto, A. Guarino, and R. Scorretti, Physica D 158(1-4), 83104 (2001).
http://dx.doi.org/10.1016/S0167-2789(01)00306-2
105.
R. Scorretti, S. Ciliberto, and A. Guarino, Europhys. Lett. 55(5), 626632 (2001).
http://dx.doi.org/10.1209/epl/i2001-00462-x
106.
A. Politi, S. Ciliberto, and R. Scorretti, Phys. Rev. E 66(2), 026107 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.026107
107.
A. Saichev and D. Sornette, Phys. Rev. E 71(1), 016608 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.016608
108.
S. G. Abaimov and J. P. Cusumano, Phys. Rev. E 90(6), 062401 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.062401
109.
L. Pauchard and J. Meunier, Phys. Rev. Lett. 70(23), 35653568 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3565
110.
D. Bonn, H. Kellay, M. Prochnow, K. Ben-Djemiaa, and J. Meunier, Science 280(5361), 265267 (1998).
http://dx.doi.org/10.1126/science.280.5361.265
111.
P. Sollich, Phys. Rev. E 58(1), 738759 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.738
112.
A. Guarino, S. Ciliberto, and A. Garcimartín, Europhys. Lett. 47(4), 456461 (1999).
http://dx.doi.org/10.1209/epl/i1999-00409-9
113.
A. Guarino, S. Ciliberto, A. Garcimartín, M. Zei, and R. Scorretti, Eur. Phys. J. B 26(2), 141151 (2002).
http://dx.doi.org/10.1007/s10051-002-8953-9
114.
P. F. Arndt and T. Nattermann, Physical Review B 63(13), 134204 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.134204
115.
D. Sornette and G. Ouillon, Phys. Rev. Lett. 94(3), 038501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.038501
116.
O. B. Naimark, in Advances in multifield theories for continua with substructure, edited by G. Capriz and P. M. Mariano (Birkhäuser, Boston, 2004), pp. 75114.
117.
O. B. Naimark, M. Davydova, O. A. Plekhov, and S. V. Uvarov, Comput. Str. 76, 6775 (2000).
http://dx.doi.org/10.1016/S0045-7949(99)00175-3
118.
M. A. Leontovich, ZhETF 8(7), 844854 (1938).
119.
M. A. Leontovich, Introduction to thermodynamics. Statistical physics (Nauka, Moscow, 1983).
120.
L. D. Landau and I. M. Khalatnikov, Doklady Akademii Nauk SSSR 96(3), 469472 (1954).
121.
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Pergamon Press, Oxford, 1980).
122.
V. A. Belyaev and O. B. Naimark, Doklady Akademii Nauk SSSR 2, 312 (1990).
123.
L. M. Kachanov, Introduction to Continuum Damage Mechanics (Kluwer Academic Publishers, Dordrecht, 1986).
124.
J. Lemaitre, A Course on Damage Mechanics, 2nd ed. (Springer, Berlin, 1996).
125.
H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971).
126.
C. Domb, M. S. Green, C. Domb and J. L. Lebowitz, (Academic Press, London, 1972-2001).
127.
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Perseus Books Publishing, L.L.C., Reading, MA, 1992).
128.
J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996).
129.
R. K. Pathria, Statistical Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1996).
130.
S. Pradhan, P. Bhattacharyya, and B. K. Chakrabarti, Phys. Rev. E 66(1), 016116 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.016116
131.
P. Bhattacharyya, S. Pradhan, and B. K. Chakrabarti, Phys. Rev. E 67(4), 046122 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.046122
132.
S. Pradhan, A. Hansen and B. K. Chakrabarti, arxiv.org/abs/0808.1375 (2008).
133.
S. Pradhan, A. Hansen, and B. K. Chakrabarti, Rev. Mod. Phys. 82(1), 499 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.499
134.
F. Omori, J. Coll. Sci. Imp. U. Tokyo 7, 111200 (1894).
135.
Y. Kagan and L. Knopoff, Geophys. J. Int. 55(1), 6786 (1978).
http://dx.doi.org/10.1111/j.1365-246X.1978.tb04748.x
136.
T. Utsu, Y. Ogata, and R. S. Matsu’ura, J. Phys. Earth 43(1), 133 (1995).
http://dx.doi.org/10.4294/jpe1952.43.1
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963304
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963304
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963304
2016-09-19
2016-12-04

Abstract

In this study, we apply the mean-field approach to the three-dimensional damage phenomena. The model approximates a solid as a polycrystalline material where grains are assumed isotropic. While the stiffness properties are considered homogeneous, the heterogeneous distribution of grains’ strengths provides the quenched statistical variability generating non-thermal fluctuations in the ensemble. Studying the statistical properties of the fluctuations, we introduce the concept of susceptibility of damage. Its divergence in the vicinity of the point of material failure can be treated as a catastrophe predictor. In accordance with this criterion, we find that damage growth in reality is much faster than it could be expected from intuitive engineering considerations. Also, we consider avalanches of grain failures and find that due to the slowing down effect the characteristic time of the relaxation processes diverges in the vicinity of the point of material failure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963304.html;jsessionid=BgU272da7KXvt4SzVFeBI9t9.x-aip-live-06?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963304&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963304&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963304'
Right1,Right2,Right3,