Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Z. H. Duan, M. C. Li, T. Mwenya, P. F. Fu, Y. F. Li, and D. D. Song, “Effective light absorption and its enhancement factor for silicon nanowire-based solar cell,” Applied Optics 55, 117121 (2016).
S. Thiyagu, B. P. Devi, and Z. Pei, “Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications,” Nano Research 4, 11361143 (2011).
A. D. Mallorquí, E. A. Lladó, I. C. Mundet, A. Kiani, B. Demaurex, S. Wolf, A. Menzel, M. Zacharias, and A. F. Morral, “Field-effect passivation on silicon nanowire solar cells,” Nano Research 8, 673681 (2015).
J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang, and J. H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Solar Energy Materials & Solar Cells 112, 8490 (2013).
M. D. Kelzenberg, D. B. T. Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environment Science 4, 866871 (2011).
L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Letters 7, 32493252 (2007).
V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Letters 9, 15491554 (2009).
J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Qiang, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Applied Physics Letters 95, 243113 (2009).
W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene): Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Applied Physics Letters 105, 233115 (2014).
K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Optics Express 22, A930A940 (2014).
C. Lundgren, R. Lopez, J. Redwing, and K. Melde, “FDTD modeling of solar energy absorption in silicon branched nanowires,” Optics Express 21, A392A400 (2013).
Y. G. Wu, Z. H. Xia, Z. M. Liang, J. Zhou, H. F. Jiao, H. Cao, and X. F. Qin, “Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications,” Optics Express 22, A1292A130 (2014).
S. Q. Yu and B. Witzigmann, “A high efficiency dual-junction solar cell implemented as a nanowire array,” Optics Express 21, A167A172 (2013).
L. Y. Cao, P. Y. Fan, A. P. Vasudev, J. S. White, Z. F. Yu, W. S. Cai, J. A. Schuller, S. H. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Letters 10, 439445 (2010).
Y. F. Li, M. C. Li, R. K. Li, P. F. Fu, L. H. Chu, and D. D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Applied Physics Letters 106, 091908 (2015).
A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free software package for electromagnetic simulations by the FDTD method,” Computer Physics Communication 181, 687702 (2010).
E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic Press, New York, 1985).
P. Spinelli, V. E. Ferry, J. Groep, M. Lare, M. A. Verschuuren, R. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” Journal of Optics 14, 024002 (2012).
K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” Journal of Applied Physics 116, 153106 (2014).
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light, 2nd ed. (Princeton University Press, New Jersey, 2008).
L. Rao, D. X. Yang, and Z. Hong, “Guiding terahertz wave within a line defect of photonic crystal slab,” Microwave and Optical Technology Letters 54, 28562858 (2012).
J. A. Kong, Electromagnetic Wave Theory (John Wiley & Sons Inc., New Jersey, 1986).
K. Zhou, Z. Guo, X. Li, J. Y. Jung, S. W. Jee, K. T. Park, H. D. Um, N. Wang, and J. H. Lee, “The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector,” Optics Express 20, A777A787 (2012).
Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gösele, “Bottom-imprint method for VSS growth of epitaxial silicon nanowire arrays with an aluminium catalyst,” Advance Materials 21, 47014705 (2009).

Data & Media loading...


Article metrics loading...



Silicon nanowires (SiNWs) embedded in Ag nano-hole arrays with broadband light absorption is proposed in this paper. Finite Difference Time Domain (FDTD) simulations were utilized to obtain absorptivity and band diagrams for both SiNWs and SiNWs embedded in Ag nano-hole arrays. A direct relationship between waveguide modes and extraordinary absorptivity is established qualitatively, which helps to optimal design the structure parameters to achieve broadband absorptivity. After introducing Ag nano-hole arrays at the rear side of SiNWs, the band modes are extended into leaky regions and light energy can be fully absorbed, resulting in high absorptivity at long wavelength. Severe reflection is also suppressed by light trapping capability of SiNWs at short wavelength. Over 70% average absorptivity from 400 nm to 1100 nm is realized finally. This kinds of design give promising route for high efficiency solar cells and optical absorbers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd