Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963643
1.
K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. a. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
F. Zhu, W. j. Chen, Y. Xu, C. l. Gao, D. d. Guan, C. h. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Nat. Mater. 14, 1020 (2015).
http://dx.doi.org/10.1038/nmat4384
3.
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.155501
4.
L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. y. Cao, S. Du, and H. J. Gao, Adv. Mater. 26, 4820 (2014).
http://dx.doi.org/10.1002/adma.201400909
5.
M. Dvila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, New J. Phys. 16, 095002 (2014).
http://dx.doi.org/10.1088/1367-2630/16/9/095002
6.
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. Dil, F. Meier, J. Osterwalder, L. Patthey, J. Checkelsky, and N. Ong, Nature 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
7.
Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).
http://dx.doi.org/10.1038/nphys2442
8.
Y. Chen, J. Analytis, J.-H. Chu, Z. Liu, S.-K. Mo, X.-L. Qi, H. Zhang, D. Lu, X. Dai, and Z. Fang, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
9.
K. Kuroda, M. Ye, A. Kimura, S. Eremeev, E. Krasovskii, E. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, and K. Shimada, Phys. Rev. Lett. 105, 146801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.146801
10.
B. H. Chou, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Y.-T. Liu, H. Lin, and A. Bansil, New J. Phys. 16, 115008 (2014).
http://dx.doi.org/10.1088/1367-2630/16/11/115008
11.
G. Cao, Y. Zhang, and J. Cao, Phys. Lett. A 379, 1475 (2015).
http://dx.doi.org/10.1016/j.physleta.2015.03.021
12.
R. W. Zhang, C.-W. Zhang, W.-X. Ji, S.-S. Li, S.-J. Hu, S.-S. Yan, P. Li, P.-J. Wang, and F. Li, New J. Phys. 17, 083036 (2015).
http://dx.doi.org/10.1088/1367-2630/17/8/083036
13.
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146802
14.
C. C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076802
15.
T. P. Kaloni, M. Tahir, and U. Schwingenschlögl, Sci. Rep. 3, 3192 (2013).
http://dx.doi.org/10.1038/srep03192
16.
T. P. Kaloni, N. Singh, and U. Schwingenschlögl, Phys. Rev. B 89, 035409 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035409
17.
T. P. Kaloni, J. Phys. Chem. C 118, 25200 (2014).
http://dx.doi.org/10.1021/jp5058644
18.
T. P. Kaloni, L. Kou, T. Frauenheim, and U. Schwingenschlögl, Appl. Phys. Lett. 105, 233112 (2014).
http://dx.doi.org/10.1063/1.4903895
19.
T. P. Kaloni and U. Schwingenschlögl, Phys. Status solidi–RRL 8, 685 (2014).
20.
T. P. Kaloni, G. Schreckenbach, M. S. Freund, and U. Schwingenschlögl, Phys. Status solidi–RRL 10, 133 (2016).
21.
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226801
22.
Y. Yao, F. Ye, X. L. Qi, S.-C. Zhang, and Z. Fang, Phys. Rev. B 75, 041401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.041401
23.
H. Min, J. Hill, N. A. Sinitsyn, B. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B 74, 165310 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165310
24.
Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang, Phys. Rev. Lett. 111, 136804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.136804
25.
T. P. Kaloni, M. Modarresi, M. Tahir, M. R. Roknabadi, G. Schreckenbach, and M. S. Freund, J. Phys. Chem. C 119, 11896 (2015).
http://dx.doi.org/10.1021/jp512993y
26.
M. Ezawa and J. Phys, Soc. Jpn. 84, 121003 (2015).
http://dx.doi.org/10.7566/JPSJ.84.121003
27.
M. Ezawa, Y. Tanaka, and N. Nagaosa, Sci. Rep. 3, 2790 (2013).
http://dx.doi.org/10.1038/srep02790
28.
L. Feng, L. Cheng-Cheng, and Y. Yu-Gui, Chin. Phys. B 24, 87503 (2015).
http://dx.doi.org/10.1088/1674-1056/24/8/087503
29.
Q. Liu, X. Zhang, L. Abdalla, A. Fazzio, and A. Zunger, Nano Lett. 15, 1222 (2015).
http://dx.doi.org/10.1021/nl5043769
30.
M. Zhao, X. Chen, L. Li, and X. Zhang, Sci. Rep. 5, 8441 (2015).
http://dx.doi.org/10.1038/srep08441
31.
Y. Nie, M. Rahman, D. Wang, C. Wang, and G. Guo, Sci. Rep. 5, 17980 (2015).
http://dx.doi.org/10.1038/srep17980
32.
L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
33.
L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045302
34.
A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235401
35.
A. M. Dimiev and J. M. Tour, ACS Nano 8, 3060 (2014).
http://dx.doi.org/10.1021/nn500606a
36.
S. Abdolhosseinzadeh, H. Asgharzadeh, and H. S. Kim, Sci. Rep. 5, 10160 (2015).
http://dx.doi.org/10.1038/srep10160
37.
T. P. Kaloni, Y. C. Cheng, R. Faccio, and U. Schwingenschlögl, J. Mater. Chem. 21, 18284 (2011).
http://dx.doi.org/10.1039/c1jm12299a
38.
Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, Appl. Phys. Lett. 101, 073110 (2012).
http://dx.doi.org/10.1063/1.4746261
39.
N. Singh, T. P. Kaloni, and U. Schwingenschlögl, Appl. Phys. Lett. 102, 023101 (2013).
http://dx.doi.org/10.1063/1.4781382
40.
Y. Du, J. Zhuang, H. Liu, X. Xu, S. Eilers, K. Wu, P. Cheng, J. Zhao, X. Pi, and K. W. See, ACS Nano 8, 10019 (2014).
http://dx.doi.org/10.1021/nn504451t
41.
V. Ongun Özcelik and S. Ciraci, J. Phys. Chem. C 117, 26305 (2013).
http://dx.doi.org/10.1021/jp408647t
42.
T. Morishita and M. J. S. Spencer, Sci. Rep. 5, 17570 (2015).
http://dx.doi.org/10.1038/srep17570
43.
G. Liu, X. L. Lei, M. S. Wu, B. Xu, and C. Y. Ouyang, J. Phys.:Condens. Matter 26, 355007 (2014).
http://dx.doi.org/10.1088/0953-8984/26/35/355007
44.
R. Wang, X. Pi, Z. Ni, Y. Liu, S. Lin, M. Xu, and D. Yang, Sci. Rep. 3, 3507 (2013).
http://dx.doi.org/10.1038/srep03507
45.
P. Giannozziet et al., J. Phys.:Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
46.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1997).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
47.
S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82, 245412 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245412
48.
T. P. Kaloni, M. Upadhyay Kahaly, R. Faccio, and U. Schwingenschlögl, Carbon 64, 281 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.07.062
49.
B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, and H. Zhu, Sci. Rep. 6, 20225 (2016).
http://dx.doi.org/10.1038/srep20225
50.
X. Xu, J. Zhuang, Y. Du, H. Feng, N. Zhang, C. Liu, T. Lei, J. Wang, M. Spencer, and T. Morishita, Sci. Rep. 4, 7543 (2014).
http://dx.doi.org/10.1038/srep07543
51.
M. Modarresi, M. Roknabadi, and N. Shahtahmasebi, J. Magn. Magn. Mater. 350, 6 (2014).
http://dx.doi.org/10.1016/j.jmmm.2013.09.018
52.
M. Modarresi, B. Kandemir, M. Roknabadi, and N. Shahtahmasebi, J. Magn. Magn. Mater. 367, 81 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.05.003
53.
X. F. Wang, Y. Hu, and H. Guo, Phys. Rev. B 85, 241402 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.241402
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963643
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963643
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963643
2016-09-21
2016-12-05

Abstract

First-principles and semi-empirical tight binding calculations were performed to understand the adsorption of oxygen on the surface of two dimensional (2D) and zigzag stanene nano-ribbons. The intrinsic spin-orbit interaction is considered in the Kane-Mele tight binding model. The adsorption of an oxygen atom or molecule on the 2D stanene opens an electronic energy band gap. We investigate the helical edge states and topological phase in the pure zigzag stanene nano-ribbons. The adsorption of oxygen atoms on the zigzag stanene nano-ribbons deforms the helical edge states at the Fermi level which causes topological (non-trivial) to trivial phase transition. The structural stability of the systems is checked by performing -point phonon calculations. Specific arrangements of adsorbed oxygen atoms on the surface of zigzag stanene nano-ribbons conserve the topological phase which has potential applications in future nano-electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963643.html;jsessionid=HA-g9BeSbBfvlEHrJQQ7XWIt.x-aip-live-02?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963643&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963643&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963643'
Right1,Right2,Right3,