Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/9/10.1063/1.4963644
1.
R. Cimino, M. Commisso, D. R. Grosso, T. Demma, V. Baglin, R. Flammini, and R. Larciprete, Phys. Rev. Lett. 109, 064801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.064801
2.
C. G. H. Walker, M. M. El-Gomati, A. M. D. Assa’d, and M. Zadražil, Scanning 30, 365 (2008).
http://dx.doi.org/10.1002/sca.20124
3.
R. Larciprete, D. Grosso, M. Commisso, R. Flammini, and R. Cimino, Phys. Rev. ST Accel. Beams 16, 011002 (2013).
http://dx.doi.org/10.1103/PhysRevSTAB.16.011002
4.
R. Cimino and T. Demma, Int. J. Mod. Phys. A 29, 1430023 (2014).
http://dx.doi.org/10.1142/S0217751X14300233
5.
R. Larciprete, D. R. Grosso, A. Di Trolio, and R. Cimino, Appl. Surf. Sci. 328, 356 (2015).
http://dx.doi.org/10.1016/j.apsusc.2014.12.046
6.
C. Y. Vallgren, G. Arduini, J. Bauche, S. Calatroni, P. Chiggiato, K. Cornelis, P. C. Pinto, B. Henrist, E. Mètral, H. Neupert, G. Rumolo, E. Shaposhnikova, and M. Taborelli, Phys. Rev. ST Accel. Beams 14, 071001 (2011).
7.
G. Apollinari, CERN Yellow Reports 5, 1 (2016).
8.
R. Cimino, V. Baglin, and F. Schäfers, Phys. Rev. Lett. 115, 264804 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.264804
9.
R. Cimino, L. Gonzalez, R. Larciprete, A. Di Gaspare, G. Iadarola, and G. Rumolo, Phys. Rev. ST Accel. Beams 18, 051002 (2015).
http://dx.doi.org/10.1103/PhysRevSTAB.18.051002
10.
E. H. Ahlgren, S. K. Hämäläinen, O. Lehtinen, P. Liljeroth, and J. Kotakoski, Phys. Rev. B 88, 155419 (2013).
11.
G. Zamborlini, M. Imam, L. L. Patera, T. O. Menteş, N. Stojić, C. Africh, A. Sala, N. Binggeli, G. Comelli, and A. Locatelli, Nano Lett. 15, 6162 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02475
12.
R. Larciprete, S. Colonna, F. Ronci, R. Flammini, P. Lacovig, N. Apostol, A. Politano, P. Feulner, D. Menzel, and S. Lizzit, Nano Lett. 16, 1808 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b04849
13.
J. R. Hahn and H. Kang, Physical Review B 60, 6007 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.6007
14.
D. Marton, H. Bu, K. J. Boyd, S. S. Todorov, A. H. Al-Bayati, and J. W. Rabalais, Surf. Sci. 326, L489 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00002-X
15.
J. R. Hahn, H. Kang, S. Song, and I. C. Jeon, Phys. Rev. B 53, R1725 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R1725
16.
J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods B 268, 1818 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.02.091
17.
T. Li, B. V. King, R. J. MacDonald, G. F. Cotterill, D. J. O’connor, and Q. Yang, Surf. Sci. 312, 399 (1994).
http://dx.doi.org/10.1016/0039-6028(94)90731-5
18.
R. Cimino, I. R. Collins, M. A. Furman, M. Pivi, F. Ruggiero, G. Rumolo, and F. Zimmermann, Phys. Rev. Lett. 93, 014801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.014801
19.
S. Mathur, Proc. Phys. Soc. 50, 495 (1952).
20.
H. Hashimoto, M. Watanabe, S. Nishiuma, K. Nakamura, and S. Yoshida, Surf. Inetrface Anal. 35, 19 (2003).
http://dx.doi.org/10.1002/sia.1486
21.
N. R. Whetten, J. Appl. Phys. 34, 771 (1963).
http://dx.doi.org/10.1063/1.1729532
22.
J. M. Ripalda, I. Montero, L. Vázquez, D. Raboso, and L. Galán, J. Appl. Phys. 99, 043513 (2006).
http://dx.doi.org/10.1063/1.2173307
23.
P. J. Mølert and M. H. Mohamed, J. Phys. C: Solid State Phys. 15, 6457 (1982).
24.
R. F. Willis, B. Fitton, and G. S. Painter, Phys. Rev. B 9, 1926 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.1926
25.
S. Y. Zhou, G.-H. Gweon, C. D. Spataru, J. Graf, D.-H. Lee, S. G. Louie, and A. Lanzara, Phys. Rev. B 71, 161403 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.161403
26.
F. Sette, G. K. Wertheim, Y. Ma, G. Meigs, S. Modesti, and C. T. Chen, Phys. Rev. B 41, 9766 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.9766
27.
W. Choi, C. Kim, and H. Kang, Surf. Sci. 281, 323 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90645-Z
28.
M. Portail, J. B. Faure, T. Angot, and J. M. Layet, Surf. Sci. 581, 24 (2005).
http://dx.doi.org/10.1016/j.susc.2005.02.027
29.
A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
30.
A. Jorio, M. M. Lucchese, F. Stavale, E. H. M. Ferreira, M. V. Moutinho, R. B. Capaz, and C. A. Achete, J. Phys.: Condens. Matter 22, 334204 (2010).
http://dx.doi.org/10.1088/0953-8984/22/33/334204
31.
Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2010).
http://dx.doi.org/10.1007/s12274-008-8036-1
32.
T. Tanabe, Phys. Scr. 1996, 7.
http://dx.doi.org/10.1088/0031-8949/1996/T64/001
33.
N. Gorjizadeh, A. A. Farajian, and Y. Kawazoe, Nanotechnology 20, 015201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/1/015201
34.
D. L. Maslov, V. I. Yudson, A. M. Somoza, and M. Ortuño, Phys. Rev. Lett. 102, 216601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.216601
35.
F. Banhart, ACS Nano 5, 26 (2010).
http://dx.doi.org/10.1021/nn102598m
36.
A. Lherbier, B. Biel, Y. M. Niquet, and S. Roche, Phys. Rev. Lett. 100, 036803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.036803
37.
G. F. Dionne, J. Appl. Phys. 44, 5361 (1973).
http://dx.doi.org/10.1063/1.1662156
38.
G. F. Dionne, J. Appl. Phys. 46, 3347 (1978).
http://dx.doi.org/10.1063/1.322061
39.
K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys 5, 43 (1972).
http://dx.doi.org/10.1088/0022-3727/5/1/308
40.
S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).
http://dx.doi.org/10.1002/sia.3522
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/9/10.1063/1.4963644
Loading
/content/aip/journal/adva/6/9/10.1063/1.4963644
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/9/10.1063/1.4963644
2016-09-20
2016-12-10

Abstract

The dependance of the secondary electron yield (SEY) on the degree of crystallinity of graphite has been investigated during the amorphization of a highly oriented pyrolytic graphite (HOPG) samples by means of Ar+ bombardment. Photoemission and Raman spectroscopies were used to follow the structural damage while the SEY curves were measured from very low energies up to 1000 eV. We found that the increase of lattice defects lowers the contribution of the electrons in the valence band and loss spectra and smears out the intense modulations in the low energy secondary electron yield (LE-SEY) curve. Raman spectroscopy results showed that ion induced lattice amorphization is confined in a near-surface layer. The evolution of SEY curves was observed with the progressive Ar+ dosage after crystal damage as due to the modification of the electronic transport properties within the damaged near surface layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/9/1.4963644.html;jsessionid=lj05mnyCuaEgy6K6BKyeI3df.x-aip-live-03?itemId=/content/aip/journal/adva/6/9/10.1063/1.4963644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/9/10.1063/1.4963644&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/9/10.1063/1.4963644'
Right1,Right2,Right3,