Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. Schmidt-Mende and J. L. MacManus-Driscoll, Mater. Today 10, 40 (2007).
A. Choi, K. Kim, H. J. Jung, and S. Y. Lee, Sens. Actuators, B 148, 577 (2010).
L. H. Shi, J. Chen, G. Zhang, and B. W. Li, Phys. Lett. A 376, 978 (2012).
Q. D. Zhao, T. F. Xie, L. L. Peng, Y. H. Lin, P. Wang, L. Peng, and D. J. Wang, J. Phys. Chem. C 111, 17136 (2007).
L. Liao, H. B. Lu, M. Shuai, J. C. Li, Y. L. Liu, C. Liu, Z. X. Shen, and T. Yu, Nanotechnology 19, 175501 (2008).
J. B. Cui, Mater. Charact. 64, 43 (2012).
Y. Fang, K. M. Wong, and Y. Lei, Nanoscale Res. Lett. 7, 197 (2012).
W. M. Yang, R. Zhu, and X. L. Zong, The Fourth International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale 143 (2014).
C. Lao, Y. Li, C. P. Wong, and Z. L. Wang, Nano Lett. 7, 1323 (2007).
Yu-C. Chang, Journal of Alloys and Compounds 664, 538 (2016).
S. H. Mousavi, H. Haratizadeh, and A. H. Kitai, Materials Letters 65, 2470 (2011).
H. Ghayour, A. Nekoubin, and A. A. Nourbakhsh, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46, 975 (2016).
N. A. B. Ghazali, M. Ebert, N. M. J. Ditshego, M. R. R. de Planque, and H. M. H. Chong, Microelectronic Engineering 159, 121 (2016).
C. Florica, N. Preda, A. Costas, I. Zgura, and I. Enculescu, Materials Letters 170, 156 (2016).
Y. Shan, Y. Yang, Y. Cao, C. Fu, and Z. Huang, Nanotechnology 27, 145502 (2016).
J. Cho, Q. B. Lin, S. W. Yang, J. G. Simmons, Y. W. Cheng, E. Lin, J. Q. Yang, J. V. Foreman, H. O. Everitt, W. T. Yang, J. S. Kim, and J. Liu, Nano Res. 5, 20 (2012).
G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991);
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1991).
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
P. Zhang, X. D. Li, C. H. Hua, S. Q. Wua, and Z. Z. Zhu, Phys. Lett. A 376, 1230 (2012).

Data & Media loading...


Article metrics loading...



ZnO nanowires are hexagonally shaped under normal growth conditions, but are transformed from a hexagon to hexagram ones when sulfur dopants are added into the growth solution. The formation mechanism of the hexagram-shaped ZnO nanowires is further studied by the calculations in this paper. The present calculations support the fact that the hexagonally shaped ZnO nanowires are transformed to hexagram shaped ones when the O atoms on the side surfaces of the nanowires are replaced by S atoms in certain quantities. It indicates that the ratio of sulfur content plays an important role in the hexagram formation. The results of the electronic charge densities indicate that the charge transfer makes the S-Zn bond longer than that of O-Zn. The new charge distribution on the side planes due to the S atoms replacement leads to the formation of the hexagram-shaped nanowires. The calculation on the electronic properties shows that a sulfur-doped hexagram ZnO nanowire is an indirect band gap semiconductor with a narrow gap. When dopant is increased, the gap will decrease.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd